

Russian APT groups Adversary Simulation

This PDF is a compilation of all Russian APT simulations that target many vital sectors,both private and
governmental. The simulation includes written tools, C2 servers, backdoors, exploitation techniques, stagers,
bootloaders, and many other tools that attackers might have used in actual attacks. These tools and TTPs (Tactics,
Techniques, and Procedures) are simulated here.

These are all the names of the Russian APT groups, and I simulated one attack for each group.

1. Cozy Bear APT29 : https://github.com/S3N4T0R-0X0/APT29-Adversary-Simulation.git

2. Fancy Bear APT28 :: https://github.com/S3N4T0R-0X0/APT29-Adversary-Simulation.git

3. Energetic Bear : https://github.com/S3N4T0R-0X0/Energetic-Bear-APT.git

4. Berserk Bear : https://github.com/S3N4T0R-0X0/Berserk-Bear-APT.git

5. Gossamer Bear : https://github.com/S3N4T0R-0X0/Gossamer-Bear-APT.git

6. Voodoo Bear APT44 : https://github.com/S3N4T0R-0X0/Voodoo-Bear-APT.git

7. Ember Bear : https://github.com/S3N4T0R-0X0/Ember-Bear-APT.git

8. Venomous Bear : https://github.com/S3N4T0R-0X0/Venomous-Bear-APT.git

9. Primitive Bear : https://github.com/S3N4T0R-0X0/Primitive-Bear-APT.git

https://github.com/S3N4T0R-0X0/APT29-Adversary-Simulation.git
https://github.com/S3N4T0R-0X0/APT29-Adversary-Simulation.git
https://github.com/S3N4T0R-0X0/Energetic-Bear-APT.git
https://github.com/S3N4T0R-0X0/Berserk-Bear-APT.git
https://github.com/S3N4T0R-0X0/Gossamer-Bear-APT.git
https://github.com/S3N4T0R-0X0/Voodoo-Bear-APT.git
https://github.com/S3N4T0R-0X0/Ember-Bear-APT.git
https://github.com/S3N4T0R-0X0/Venomous-Bear-APT.git
https://github.com/S3N4T0R-0X0/Primitive-Bear-APT.git

Table of Contents

Russian Cyber Superiority ... 3

Cozy Bear APT29 .. 4

Energetic Bear ... 11

Berserk Bear ... 19

Fancy Bear APT28 ... 22

Gossamer Bear .. 29

Venomous Bear ... 35

Ember Bear ... 40

Primitive Bear ... 48

Voodoo Bear APT44 .. 53

 Page 2

Exploiting resources is much more important than just using them

This is what many Russian threat actors rely on. They exploit incidents in general for phishing campaigns, such as
the earthquake that happened in Turkey. At that time, all countries of the world were sending aid to Turkey, and they
took advantage of this issue for the sake of launching phishing campaigns on Diplomatic institutions in Turkey, and
on the same issue, took advantage of the war that Russia was waging against Ukraine at the time. All the people in
Ukraine were selling their homes, property, and valuable things at very cheap prices for the sake of being able to
travel and save their lives, and the same issue is repeated every time in a different way, even at the technical level,
that they are using APIs to hide traffic.
https://unit42.paloaltonetworks.com/cloaked-ursa-phishing/

Of course, this is in addition to their discovery of zero-day vulnerabilities and using them in the attack, knowing the
type of defense machines before the attack and writing down the servers specifically for this attack. At the same
time, the threat actors create software vulnerabilities that are intended to access sensitive information and at the
same time, they also build the C2 server Based on certain information that the victim has, such as a specific type of
product, threat actors attempt to build a c2 server that exploits API of the same type of product that is already present
at the target to avoid the SOC team by hiding the traffic by product API.
https://thehackernews.com/2024/03/apis-drive-majority-of-internet-traffic.html?m=1

This is in addition to their exploitation of knowledge of the types of products already available to their targets to
create fake software and exploit it to carry out malicious activities, This is just like what happened at the beginning
of the Russian-Ukrainian war, where threat actors used fack update to attack Ukraine’s CERT.
https://www.socinvestigation.com/ukraines-cert-warns-russian-threat-actors-for-fake-av-updates/

Russian Cyber Superiority

The Russian APT groups use their capabilities to collect information 100%, which is the main thing o n which their
attack is built.

 Page 3

https://unit42.paloaltonetworks.com/cloaked-ursa-phishing/
https://thehackernews.com/2024/03/apis-drive-majority-of-internet-traffic.html?m=1
https://www.socinvestigation.com/ukraines-cert-warns-russian-threat-actors-for-fake-av-updates/

Cozy Bear APT29

This is a simulation of attack by the Cozy Bear group (APT-29) targeting diplomatic missions.
The campaign began with an innocuous and legitimate event. In mid-April 2023, a diplomat within the Polish Ministry
of Foreign Affairs emailed his legitimate flyer to various embassies advertising the sale of a used BMW 5-series sedan
located in Kyiv. The file was titled BMW 5 for sale in Kyiv - 2023.docx.
I relied on palo alto to figure out the details to make this simulation: https://unit42.paloaltonetworks.com/cloaked-ursa-phishing/

1. DOCX file: created DOCX file includes a Hyperlink that leads to downloading further HTML (HTML smuggling file).

2. HTML Smuggling: The attackcers use the of HTML smuggling to obscure the ISO file.

3. LNK files: When the LNK files (shortcut) are executed they run a legitimate EXE and open a PNG file. However,
 behind the scenes, encrypted shellcode is read into memory and decrypted.

4. ISO file: The ISO file contains a number of LNK files that are masquerading as images. These LNK files are used to
 execute the malicious payload.

5. DLL hijacking: The EXE file loads a malicious DLL via DLL hijacking, which allows the attacker to execute arbitrary
 code in the context of the infected process.

6. Shellcode injection: The decrypted shellcode is then injected into a running Windows process, giving the attacker
 the ability to execute code with the privileges of the infected process.

7. Payload execution: The shellcode decrypts and loads the final payload inside the current process.

8. Dropbox C2: This payload beacons to Dropbox and Primary/Secondary C2s based on the Microsoft Graph API.

https://unit42.paloaltonetworks.com/cloaked-ursa-phishing/

The first stage (delivery technique)

First the attackers created DOCX file includes a Hyperlink that leads to downloading further HTML (HTML smuggling
file) The advantage of the hyperlink is that it does not appear in texts, and this is exactly what the attackers wanted
to exploit.

 Page 5

The Second stage (implanting technique)

HTML Smuggling used to obscure ISO file and the ISO contains a number of LNK files masquerading as images
command line to make payload base64 to then put it in the HTML smuggling file: base64 payload.iso -w 0 and i added
a picture of the BMW car along with the text content of the phishing message in the HTML file.

I now need to create a PNG image that contains images of the BMW car, but in the background when the image is
opened, the malware is running in the background, at this stage i used the WinRAR program to make the image open
with Command Line execution via CMD when opening the image and I used an image in icon format.

 Page 6

The third stage (execution technique)

After using WinRaR for this compressed file, i will make a short cut of this file and put it in another file with the actual
images then we will convert it to an ISO file through the PowerISO program.

Note: This iso file is the one to which i will make base64 for this iso file and put in the html smuggling file before
make hyperlink and place it in the docx file.

Because i put the command line in the setup (run after extraction) menu in the Advanced SFX options for the WinRaR
program now when the victim open the ISO file to see the high-quality images for the BMW car according to the
phishing message he had previously received he will execute the payload with opening the actual image of the BMW
car.

 Page 7

The fourth stage (Data Exfiltration) over Dropbox API C2 Channe

The attackers used the Dropbox C2 (Command and Control) API as a means to establish a communication channel
between their payload and the attacker's server. By using Dropbox as a C2 server, attackers can hide their malicious
activities among the legitimate traffic to Dropbox, making it harder for security teams to detect the threat. First, i
need to create a Dropbox account and activate its permissions, as shown in the following figure.

After that, I will go to the settings menu to generate the access token for the Dropbox account, and this is what I will
use in Dropbox C2.

 Page 8

This script integrates Dropbox API functionality to facilitate communication between the
compromised system and the attacker-controlled server, thereby hiding the traffic within legitimate
Dropbox communication, and take the access token as input prompts the user to enter an AES key (which must be
16, 24, or 32 bytes long) and encrypts the token using AES encryption in ECB mode. It then base64 encodes the
encrypted token and returns it.

I used payload written by Python only to test C2 (testing payload.py), if there were any problems with the connection
(just for test connection) before writing the actual payload.
The fifth stage (payload with DLL hijacking) and injected Shellcode
This payload uses the Dropbox API to upload data, including command output to Dropbox. By leveraging the Dropbox
API and providing an access token the payload hides its traffic within the legitimate traffic of the Dropbox servic and
If the malicious DLL fails to load, it prints a warning message but continues executing without it.

 Page 9

Final result: payload connect to Dropbox C2 server

1.DLL Injection: The payload utilizes DLL hijacking to load a malicious DLL into the address space of a target process.

2.Shellcode Execution: Upon successful injection, the malicious DLL executes shellcode stored within its DllMain
 function.

3.Memory Allocation: The VirtualAlloc function is employed to allocate memory within the target process, where the
 shellcode will be injected.

4.Shellcode Injection: The shellcode is copied into the allocated memory region using memcpy, effectively injecting
 it into the process

5.Privilege Escalation: If the compromised process runs with elevated privileges, the injected shellcode inherits those
 privileges, allowing the attacker to perform privileged operations.

the final step in this process involves the execution of the final payload. After being decrypted and loaded into the
current process, the final payload is designed to beacon out to both Dropbox API-based C2 server.

 Page 10

Energetic Bear

This is a simulation of attack by (Energetic Bear) APT group targeting “eWon” is a Belgian producer of SCADA and
industrial network equipmen, the attack campaign was active from January 2014, The attack chain starts with
malicious XDP file containing the PDF/SWF exploit (CVE-2011-0611) and was used in spear-phishing attack. This exploit
drops the loader DLL which is stored in an encrypted form in the XDP file, The exploit is delivered as an XDP (XML
Data Package) file which is actually a PDF file packaged within an XML container. I relied on Kaspersky tofigure out
the details to make this simulation: https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/08080817/EB-YetiJuly2014-Public.pdf

This attack included several stages including exploitation of the (CVE-2011-0611) vulnerability which allows attackers
to overwrite a pointer in memory by embedding a specially crafted .swf, The XDP file contains a SWF exploit CVE-2011-
0611 and two files encrypted with XOR stored in the XDP file One of the files is malicious DLL the other is a JAR file
which is used to copy and run the DLL by executing the Cmd command line

1. CVE-2011-0611: this module exploits a memory corruption vulnerability in Adobe Flash Player versions 10.2.153.1
 and earlier, i maked Modified version of the exploit based on Windows 10.

2. CVE-2012-1723: this exploit allows for sandbox escape and remote code execution on any target with a vulnerable
 JRE (Java IE 8).

3. XDP file: this XDP file contains a malicious XML Data Package (XDP) with a SWF exploit(CVE-2011-0611), It also
 includes functionality to download additional files via HTML-Smuggling by apache host.

4. HTML Smuggling: the html-smuggling file is used after uploading it to the apache server to download other files,
 One of the files is DLL payload the other is a small JAR file.

5. JAR file: this jar file used to copy and run the DLL by executing the cmd command.

6. DLL payload: the attackers used havex trojan, havex scanned the infected system to locate any supervisory control
 and data acquisition SCADA.

7. Encrypted with XOR: the XDP file contains a SWF exploit and two files encrypted with XOR.

8. PHP backend C2-Server: the attckers used hacked websites as simple PHP C2 Server backend.

9. Final result: make remote communication by utilizes XOR encryption for secure data transmission between the
 attacker server and the target.

 Page 11

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/08080817/EB-YetiJuly2014-Public.pdf

The first stage (exploit Adobe SWF Memory Corruption Vulnerability CVE-2011-0611)

his module exploits a memory corruption vulnerability (CVE-2011-0611) in Adobe Flash Player versions
10.2.153.1 and earlier. The vulnerability allows for arbitrary code execution by exploiting a flaw in how Adobe Flash
Player handles certain crafted .swf files. By leveraging this vulnerability, an attacker can execute arbitrary code on
the victim's system.

sudo cp EnergeticBear_exploit.rb /usr/share/metasploit-framework/modules/exploits

sudo updatedb

msf6 > search EnergeticBear_exploit

 Page 12

 Link

The Second stage (CVE-2012-1723 Oracle Java Applet Field Bytecode Verifier Cache
RCE)

This Modified version of the exploit CVE-2011-0611 based on Windows 10 ,the original exploit from :

This vulnerability in the Java Runtime Environment (JRE) component in Oracle Java SE 7 update 4 and earlier, 6 update
32 and earlier, 5 update 35 and earlier, and 1.4.2_37 and earlier allows remote attackers to affect confidentiality,
integrity, and availability via unknown vectors related to Hotspot. if you need know more about CVE-2012-1723:
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Exploit:Java/CVE-2012-1723!generic&threatId=-2147302241

use exploit/multi/browser/java_verifier_field_access

The attackers actively compromises legitimate websites for watering hole attacks. These hacked websites in turn
redirect victims to malicious JAR or HTML files hosted on other sites maintained by the group (exploiting CVE -2013-
2465, CVE-2013-1347, and CVE-2012-1723 in Java 6, Java 7, IE 7 and IE 8), These hacked websites will be using a simple
PHP C2 Server backend.

 Page 13

https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/windows/browser/adobe_flashplayer_flash10o.rb
https://unit42.paloaltonetworks.com/cloaked-ursa-phishing/
https://unit42.paloaltonetworks.com/cloaked-ursa-phishing/
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/windows/browser/adobe_flashplayer_flash10o.rb
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Exploit:Java/CVE-2012-1723!generic&threatId=-2147302241
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/windows/browser/adobe_flashplayer_flash10o.rb
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/windows/browser/adobe_flashplayer_flash10o.rb
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/windows/browser/adobe_flashplayer_flash10o.rb
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/windows/browser/adobe_flashplayer_flash10o.rb

The third stage (XML Data Package XDP with a SWF exploit)

 RCE)

The fourth stage (HTML-Smuggling with DLL payload & JAR file)

 RCE)

The exploit is delivered as an XDP (XML Data Package) file which is actually a PDF file packaged within an XML
container. This is a known the PDF obfuscation method and serves as an additional anti -detection layer. if you need
know more about XDP file: https://filext.com/file-extension/XDP

The XDP file contains a SWF exploit (CVE-2011-0611) and two files (encrypted with XOR) stored in the PDF file, It also
includes functionality to download additional files via HTML-Smuggling by apache host.

The HTML smuggling file is used after uploading it to the apache server to download other files, One of the files is
DLL payload the other is a small JAR file which is used to copy and run the DLL, the command line to make payload
base64 to then put it in the HTML smuggling file: base64 payload.dll -w 0 and the same command but with jar file.

 Page 14

https://filext.com/file-extension/XDP

The fifth stage (Copy DLL by JAR file)

 RCE)

The sixth stage DLL payload (Havex trojan)

 RCE)

This jar file used to copy and run the DLL by executing the following command: cmd /c copy payload.dll
%TEMP%\\payload.dll /y & rundll32.exe %TEMP%\\payload.dll,RunDllEntry

It constructs a command to copy a file named payload.dll to the %TEMP% directory
(typically the temporary directory) as payload.dll and then execute it using rundll32.exe and it waits for the process
to finish using process.waitFor().

The attackers gained access to eWon’s FTP site and replaced the legitimate file with one that is bound with the Havex
dropper several times.

The main functionality of this component is to download and load additional DLL modules into the memory. These
are stored on compromised websites that act as C&C servers. In order to do that, the malware injects itself into the
EXPLORER.EXE process, sends a GET/POST request to the PHP script on the compromised website, then reads the
HTML document returned by the script, looking for a base64 encrypted data between the two “havex” strings in the
comment tag <!--havexhavex--> and writes this data to a %TEMP%<tmp>.xmd file (the filename is generated by
GetTempFilename function).
Full Disclosure of Havex Trojans: https:/www.netresec.com/?page=Blog&month=2014-10&post=Full-Disclosure-of-Havex-Trojans

 Page 15

https://www.netresec.com/?page=Blog&month=2014-10&post=Full-Disclosure-of-Havex-Trojans

The seventh stage (encrypted XDP with XOR)

 RCE)

If you need know more about Havex trojan: https://malpedia.caad.fkie.fraunhofer.de/details/win.havex_rat
Notes on havex trojan: http://pastebin.com/qCdMwtZ6
In this simulation i used a simple payload with XOR encryption to secure the connection between the C2 Server and
the Target Machine, this payload uses Winsock for establishing a tcp connection between the target machine and the
attacker machine, in an infinite loop the payload receives commands from the attacker c2 decrypts them using (XOR)
encryption executes them using system and then sleeps for 10 seconds before repeating the loop.

This network forensics form (SCADA hacker) about havex trojan:
https://scadahacker.com/library/Documents/Cyber_Events/NETRESEC%20-%20SCADA%20Network%20Forensics.pdf

After making compile for the payload and jar file and make base64 for the jar file and DLL payload, i put them in the
html smuggling file, then i make host for the html file, then i put this host in the
XDP file next to CVE-2011-0611, then i make XOR encryption for XDP file, after this convert xdp to pdf.

i used browserling to make xor encrypt: https://scadahacker.com/library/Documents/Cyber_Events/NETRESEC%20-%20SCADA%20Network%20Forensics.pdf

 Page 16

https://malpedia.caad.fkie.fraunhofer.de/details/win.havex_rat
http://pastebin.com/qCdMwtZ6
https://scadahacker.com/library/Documents/Cyber_Events/NETRESEC%20-%20SCADA%20Network%20Forensics.pdf
https://scadahacker.com/library/Documents/Cyber_Events/NETRESEC%20-%20SCADA%20Network%20Forensics.pdf

The eighth stage (PHP backend C2-Server)

 RCE)

This PHP C2 server script enable to make remote communication by utilizes XOR encryption for secure data
transmission between the attacker server and the target.

xor_encrypt($data, $key) This function takes two parameters: the data to be encrypted ($data) and the encryption
key ($key) it iterates over each character in the data and performs an XOR operation between the character and the
corresponding character in the key (using modulo to repeat the key if it's shorter than the data), the result is
concatenated to form the encrypted output which is returned.

send_to_payload($socket, $data, $encryption_key) This function sends encrypted data to the target system (payload)
over a socket connection it first encrypts the data using the xor_encrypt function with the provided encryption key
then it writes the encrypted data to the socket using socket_write.

receive_from_payload($socket, $buffer_size, $encryption_key) This function receives encrypted data from the target
system over a socket connection it reads data from the socket with a maximum buffer size specified by $buffer_size,
the received encrypted data is then decrypted using the xor_encrypt function with the provided encryption key before
being returned.

if you chose (command or URL) is encrypted using XOR encryption with a user-defined key before being sent to the
target.

This other simulation for the same attack by cobaltstrike: https://www.youtube.com/watch?v=XkBvo6z0Tqo

 Page 17

https://www.youtube.com/watch?v=XkBvo6z0Tqo

Final result: payload connect to PHP C2-server

 RCE)

1.Set up a web server or any HTTP server that can serve text content.

2.Upload a text file containing the commands you want the compromised system to execute.

3.Make sure the text file is accessible via HTTP and note down the URL.

4.When prompted by the script, enter the URL you obtained in step.

NOTE: If you choose to fetch commands from a URL it will prompt you to enter the URL,

 If you choose to enter commands directly it will prompt you to Enter a command to execute

 Page 18

Berserk Bear

This is a simulation of attack by (Berserk Bear) APT group targeting critical infrastructure and energy companies
around the world, primarily in Europe and the United States,

The attack campaign was active from least May 2017. This attack target both the critical infrastructure providers and
the vendors those providers use to deliver critical services, the attack chain starts with malicious (XML container)
Injected into DOCX file connected to external server over (SMB) used to silently harvest users credentials and was
used in spear-phishing attack. I relied on Cisco Talos Intelligence Group tofigure out the details to make this
simulation: https://blog.talosintelligence.com/template-injection/

If you need to know more about Berserk Bear APT group attacks: https://apt.etda.or.th/cgi-bin/showcar d.cgi ?g=Berserk%20Bear,%20Dragonfly%202.0 &n= 1

https://apt.etda.or.th/cgi-bin/showcard.cgi?g=Berserk%20Bear%2C%20Dragonfly%202%2E0&n=1

This attack included several stages including Injecting a DOCX file and using a malicious XML container that creates
a specific alert to obtain credentials and is transferred to the attackers’ server, which in turn is used by them to
obtain data for the organizations that were targeted by the spear-phishing attack. The DOCX file was a CV that was
Presented to a person with ten years of experience in software development and SCADA control systems.

 1. Create CV DOCX file which will be injected and sent spear phishing.

 2. Make injections into DOCX file to obtain credentials using the phishery tool.

 3. Credential Phishing is when the target opens the target Word file and enters credentials into the notification that

 will be shown to them.

 Page 19

https://blog.talosintelligence.com/template-injection/
https://apt.etda.or.th/cgi-bin/showcard.cgi?g=Berserk%20Bear,%20Dragonfly%202.0&n=1

The first stage (delivery technique)

 RCE)

The Second stage (implanting technique)

 RCE)

Since the attackers here wanted to target institutions related to energy and energy management systems such as
SCADA, the attackers created a DOCX file in the form of a CV to apply for a job. It seems that there was a hiring open
to work for such a position, and the attackers sent the CV that contained the malicious XML container, here i created
a CV identical to the one they used in the actual attack.

According to what Cisco Talos Intelligence Group said the attackers worked to inject the DOCX file via a phishery tool,
this is because at the time of this attack it was a tool that had not been released for a long time and this is the point
where the attackers took advantage of it the most and it is also possible that they made some modifications before
using it in this attack.

 Page 20

The third stage (execution technique)

 RCE)

Phishery is a Simple SSL Enabled HTTP server with the primary purpose of phishing credentials via Basic
Authentication. Phishery also provides the ability easily to inject the URL into a .docx Word document.

Github repository: https://github.com/ryhanson/phishery.git

Credential Phishing is when the target opens the target Word file and enters credentials into the notification that
will be shown to them.

 Page 21

https://github.com/ryhanson/phishery.git

Fancy Bear APT28

This is a simulation of attack by Fancy Bear group (APT28) targeting high-ranking government officials Western Asia
and Eastern Europe the attack campaign was active from October to

November 2021, The attack chain starts with the execution of an Excel downloader sent to the victim via email which
exploits an MSHTML remote code execution vulnerability (CVE-2021-40444) to execute a malicious executable in
memory, I relied on trellix tofigure out the details to make this simulation: https://www.trellix.com/blogs/research/prime-ministers-office-compromised/

This attack included several stages including exploitation of the CVE-2021-40444 vulnerability through which remote
access execution can be accessed through word file this is done by injecting the DLL into Word file through this
exploit, Also use OneDrive c2 Server to get command and control and this is to data exfiltration with hide malicious
activities among the legitimate traffic to OneDrive.

1. Create dll downloads files through base64, This is to download two files the first is (dfsvc.dll) the second is
 (Stager.dll).

2. Exploiting the zero-day vulnerability to inject the DLL file into Word File and create an executionfor DLL by opening
 Word File.

3. Word File is running and the actual payload is downloaded through DLLDownloader.dll and Ihave two files
 Stager.dll and dfsvc.dll.

4. The Stager decrypts the actual payload and runs it which in turn is responsible for commandand control.

5. Data exfiltration over OneDrive API C2 Channe, This integrates OneDrive API functionality tofacilitate
 communication between the compromised system and the attacker-controlled server thereby potentially hiding
 the traffic within legitimate OneDrive communication.

6. Get Command and Control through payload uses the OneDrive API to upload data includingcommand output to
 OneDrive, the payload calculates the CRC32 checksum of the MachineGuid and includes it in the communication
 with the server for identification purposes.

 Page 22

https://www.trellix.com/blogs/research/prime-ministers-office-compromised/

The first stage (delivery technique)

 RCE)

First the attackers created DLL executable (DLLDownloader.dll) this DLL it can download two payloads by command
line to make payload base64 base64 dfsvc.dll -w 0 and base64 Stager.dll -w 0 the first is (dfsvc.dll) the second is
(Stager.dll), This DLL will be used in the next stage by injecting it into a Word file via the Zero-day vulnerability.

 Page 23

The Second stage (implanting technique)

 RCE)

The third stage (execution technique)

 RCE)

second the attackers exploited the Zero-day vulnerability (CVE-2021-40444)
https://github.com/lockedbyte/CVE-2021-40444/ this vulnerability works by injecting a DLL file into
Microsoft Word When the file is opened it executes the DLL payload, which is responsible for downloading two other
payload (dfsvc.dll) and (Stager.dll).

When a victim opens the malicious Office document using Microsoft Office, the application parses the document's
content, including the embedded objects. The flaw in the MSHTML component is triggered during this parsing process,
allowing the attacker's malicious code to be executed within the context of the Office application.

Now i have a Word file when i open it performs an execution for the DLL Downloader and thus downloads the two
files (dfsvc.dll) and (Stager.dll) this is through the vulnerability CVE-2021-40444.

 Page 24

https://github.com/lockedbyte/CVE-2021-40444/

The fourth stage (Data Exfiltration) over
OneDrive API C2 Channe

 RCE)

After that the stager decrypts the payload using the Decrypt-Payload function
(you need to implement the decryption algorithm) and then executes the payload using the Execute-Payload
function, In this simulation i made the build perform an execution directly without the need for
the stager script, and it can be modified to suit the stager making an execution for the actual payload.

The attackers used the OneDrive C2 (Command and Control) API as a means to establish a communication channel
between their payload and the attacker's server, By using OneDrive as a C2 server, attackers can hide their malicious
activities among the legitimate traffic to OneDrive, making it harder for security teams to detect the threat. First, I
need to create a Microsoft Azure account and activate its permissions, as shown in the following figure.
I will use the Application (client) ID for the inputs needed by the C2 server

 Page 25

After that, I will go to the Certificates & secrets menu to generate the Secret ID for the Microsoft Azure account, and
this is what i will use in OneDrive C2.

To make simulation of this attack at the present time i did not use the PowerShell Empire to avoid detection and i
make customization of the OneDrive C2 server, This script integrates OneDrive API functionality to facilitate
communication between the compromised system and the attacker controlled server, thereby potentially hiding the
traffic within legitimate OneDrive communication and i used AES Encryption to secure the connection just like the
PowerShell Empire server that the attackers used in the actual attack, The customization OneDrive C2 Server inspired
by PowerShell Empire.

 Page 26

 The fifth stage (payload with OneDrive
API requests)

 RCE)

This payload establishes covert communication via socket to a remote server, disguising traffic within OneDrive API
requests. It identifies machines using CRC32 checksums of their MachineGuids.
Commands are executed locally, with outputs sent back to the server or uploaded to OneDrive.
Its dynamic configuration enables flexible and stealthy remote control and data exfiltration.

1. Covert communication: The payload initiates a socket connection to a specified IP address and port.

2. Identification mechanism: It retrieves the MachineGuid from the Windows registry and calculates its CRC32
 checksum.

3. Command execution: The payload enters a loop to receive commands from the remote server or OneDrive.

4. Data exfiltration: After execution it captures output and sends it back to the server or uploads it to OneDrive.

5. Stealthy communication: Utilizing OneDrive API it blends network traffic with legitimate OneDrive traffic.

6. Dynamic configuration: Behavior is configured by specifying IP address, port and optionally an access token for
 OneDrive.

 Page 27

 Final result: payload connect to OneDrive C2 server

the final step in this process involves the execution of the final payload. After being decrypted and loaded into the
current process, the final payload is designed to beacon out to both OneDrive API-based C2 server.

 Page 28

Gossamer Bear

This is a simulation of attack by (Gossamer Bear) APT group targeting Institutions logistics support and defense to
Ukraine the attack campaign was active from April 2023, The attack chain starts with send message with either an
attached PDF file or a link to a PDF file hosted on a cloud storage platform. The PDF file will be unreadable, with a
prominent button purporting to enable reading the content, Pressing the button in a PDF lure causes the default
browser to open a link embedded in the PDF file code this is the beginning of the redirection chain. Targets will likely
see a web page titled “Docs” in the initial page opened and may be presented with a CAPTCHA to solve before
continuing the redirection. The browsing session will end showing a sign-in screen to the account where the spear-
phishing email was received, with the targeted email already appearing in the username field. I relied on microsoft
tofigure out the details to make this simulation: https://www.microsoft.com/en-us/security/blog/2023/12/07/star-blizzard-increases-sophistication-and-evasion-in-ongoing-attacks/

This attack included several stages including creating a PDF file and placing a hyperlink inside it.
The PDF file will be unreadable, with a prominent button intended to enable reading the content, Pressing the button
in the PDF file causes the default browser to open a link to a fake page that steals the target's Credential, From the
same PDF I also made it possible for me to get Command and Control.

1. PDF file: created PDF file includes a Hyperlink that leads to a fake page that steals Credential.

2. HTML Smuggling: it was used to open the URL of the credentials phishing page and also to install the payload.

3. Now when you click the prominent button in the PDF file it launches the html smuggling file on the apache server
 which contains payload in base64 encod and the phishing link.

4. Data exfiltration: over GoogleDrive API C2 Channe, This integrates GoogleDrive API functionality to facilitate
 communication between the compromised system and the attacker-controlled server thereb

5. Make simple reverse shell payload to creates a TCP connection to a command and control (C2) server and listens
 for commands to execute on the target machine.

6. The final step in this process involves the execution of the final payload, After it was downloaded through an
 obfuscated HTML file with base64 encoding and a phishing link was opened.

 Page 29

https://www.microsoft.com/en-us/security/blog/2023/12/07/star-blizzard-increases-sophistication-and-evasion-in-ongoing-attacks/

The first stage (delivery technique)

First the attackers created PDF file includes a Hyperlink that leads to a fake page that steals
Credential, The advantage of the hyperlink is that it does not appear in texts, and this is exactly what the attackers
wanted to exploit.

HTML Smuggling it was used to open the URL of the credentials phishing page and also to create an install for payload
to get Command and Control, After that i will place the HTML file in the apache server, take the localhost and place
it as a hyperlink in the prominent button in the PDF file.

 Page 30

The second stage (implanting technique)

Now i will place the phishing link inside the HTML file in addition to the payload through base64 inside the HTML file,
In this simulation i used the PyPhisher tool.
PyPhisher: https://github.com/KasRoudra2/PyPhisher.git
base64 payload.exe

After that i will obfuscate the html file after putting the phishing link and the payload inside it before putting it in
the apache server
I used wmtips to make obfuscation for the html file: https://www.wmtips.com/tools/html-obfuscator/#google_vignette

 Page 31

https://github.com/KasRoudra2/PyPhisher.git
https://www.wmtips.com/tools/html-obfuscator/#google_vignette

The third stage (execution technique)

The fourth stage (Data Exfiltration) over GoogleDrive API C2 Channe

Now when i click the prominent button in the PDF file it launches the html smuggling file on the apache server which
contains payload in base64 encod and the phishing link.

In the actual attack, the attackers did not use an actual c2 server or payload and limited themselves to spear phishing,
but here I wanted to exploit the presence of a larger HTML file to download the payload and open malicious url.
First i need to create a google Drive account, as shown in the following figure

1. Log into the Google Cloud Platform
2. Create a project in Google Cloud Platform dashboard
3. Enable Google Drive API
4. Create a Google Drive API key

 Page 32

The fifth stage (payload with reverse shell)

I used the GoogleDrive C2 (Command and Control) API as a means to establish a communication channel between
the payload and the attacker's server, By using GoogleDrive as a C2 server, i can hide the malicious activities among
the legitimate traffic to GoogleDrive, making it harder for security teams to detect the threat.

This payload is a simple reverse shell written in Rust it creates a TCP connection to a command and control (C2)
server and listens for commands to execute on the infected machine, the payload first sets up the IP address and
port number of the C2 server.

When a command is received, it is executed using the cmd command in Windows. The output of the command is
captured and sent back to the C2 server, the loop continues until the connection is closed by the C2 server or an
error occurs while receiving data from the server.

 Page 33

Final result: payload connect to GoogleDrive C2 server

The final step in this process involves the execution of the final payload, After it was downloaded through an
obfuscated HTML file with base64 encoding and a phishing link was opened.

 Page 34

Venomous Bear

This is a simulation of attack by (Venomous Bear) APT group targeting U.S.A, Germany and
Afghanista attack campaign was active since at least 2020, The attack chain starts with installed the backdoor as a
service on the infected machine. They attempted to operate under the radar by naming the service "Windows Time
Service", like the existing Windows service. The backdoor can upload and execute files or exfiltrate files from the
infected system, and the backdoor contacted the command and control (C2) server via an HTTPS encrypted channel
every five seconds to check if there were new commands from the operator. I relied on Cisco Talos Intelligence Group
tofigure out the details to make this simulation: https://blog.talosintelligence.com/tinyturla/

The attackers uses a .BAT file that resembles the Microsoft Windows Time Service, to install the backdoor. The
backdoor comes in the form of a service dynamic link library (DLL) called w64time.dll. The description and filename
make it look like a valid Microsoft DLL. Once up and running, it allows the attackers to exfiltrate files or upload and
execute them, thus functioning as a second-stage postern when needed.

1. BAT file: The attackers used a .bat file similar to the one below to install the backdoor as a harmless -looking fake
 Microsoft Windows Time service.

2. DLL backdoor: I have developed a simulation of the backdoor that the attackers used in the actual attack.

3. Backdoor Listener: I was here developed a simple listener script that waits for the incoming connection from the
 backdoor when it is executed on the target machine.

According to what the Cisco team said, they were not able to identify the method by which this backdoor was
installed on the victims’ systems.

 Page 35

https://blog.talosintelligence.com/tinyturla/

The first stage (.BAT file)

The attackers used a .bat file similar to the one below to install the backdoor as a harmless-looking fake Microsoft
Windows Time service, the .bat file is also setting the configuration parameters in the registry the backdoor is using.

I wrote a .bat file identical to the one the attackers used to the one below to install the backdoor as a fake Microsoft
Windows Time service.

These commands add various configuration parameters for the W64Time service to the registry.

ServiceDll: Specifies the DLL that implements the service.
Hosts: Sets the hosts and port (values removed for security).
Security: Configures security settings (value removed for security).
TimeLong: A time-related setting.
TimeShort: Another time-related setting.

 Page 36

The Second stage (DLL backdoor)

This means the malware is running as a service, hidden in the svchost.exe process. The DLL's ServiceMain startup
function is doing not much more than executing.

"Here, I have developed a simulation of the backdoor that the attackers used in the actual attack."

First, the backdoor reads its configuration from the registry and saves it in the "result" structure, which is later on
assigned to the "sConfig" structure.

 Page 37

This backdoor includes the following components:

1. Service Control Handler: Registers a service control handler to manage the service's state.
2. Main Malware Function: Placeholder for the main logic of the backdoor.
3. Configuration Reading: Initializes the configuration with placeholders for actual values.
4. C2 Command Retrieval: Simulates retrieving commands from a Command and Control (C2) server.
5. Command Processing: Processes the retrieved commands (currently simulated).
6. Service Loop: Continuously connects to the C2 server and processes commands, with error handling and cleanup.

Adjust the placeholder values and add the actual logic for backdoor operations and C2 command processing as per
your requirements.

 Page 38

The third stage (Backdoor Listener)

I was here developed a simple listener script that waits for the incoming connection from the backdoor when it is
executed on the target machine.

Accepts incoming connections: When a client connects, it prints the client's IP address and port.
Sends the command: Encodes the command as bytes and sends it over the socket.
Prompts for a command: Asks the user to enter a command to send to the connected client.
Continues reading until no more data is received.
Receives output from the client: Reads data in chunks of 4096 bytes.
Accumulates the data into the output variable.

 Page 39

Ember Bear

This is a simulation of attack by (Ember Bear) APT group targeting energy Organizations in Ukraine the attack
campaign was active on April 2021, The attack chain starts wit spear phishing email sent to an employee of the
organization, which used a social engineering theme that suggested the individual had committed a crime. The email
had a Word document attached that contained a malicious JavaScript file that would download and install a payload
known as SaintBot (a downloader) and OutSteel (a document stealer). The OutSteel tool is a simple document stealer.
It searches for potentially sensitive documents based on their file type and uploads the files to a remote server. The
use of OutSteel may suggest that this threat group’s primary goals involve data collection on government
organizations and companies involved with critical infrastructure. The SaintBot tool is a downloader that allows the
threat actors to download and run additional tools on the infected system. SaintBot provides the actors persistent
access to the system while granting the ability to further their capabilities. I relied on palo alto to figure out the
details to make this simulation: https://unit42.paloaltonetworks.com/ukraine-targeted-outsteel-saintbot/

This attack included several stages including links to Zip archives that contain malicious shortcuts
(LNK) within the spear phishing emails, as well as attachments in the form of PDF documents, Word documents,
JavaScript files and Control Panel File (CPL) executables. Even the Word documents attached to emails have used a
variety of techniques, including malicious macros, embedded JavaScript and the exploitation of CVE-2017-11882 to
install payloads onto the system. With the exception of the CPL executables, most of the delivery mechanisms rely
on PowerShell scripts to download and execute code from remote servers.

1. Create the Word Document: Write a Word document (.docx) containing the exploitation of CVE-2017-11882 to install
 payloads onto the system.

2. CVE-2017-11882: this exploit allow an attacker to run arbitrary code in the context of the currentuser by failing to
 properly handle objects in memory.

3. Data exfiltration: over Discord API C2 Channe, This integrates Discord API functionality to facilitate communication
 between the compromised system and the attacker-controlled server thereby potentially hiding the traffic within
 legitimate Discord communication.

4. SaintBot: is a payload loader, It contains capabilities to download further payloads as requested by attackers.

5. The attackers used .BAT file to disable Windows Defender functionality, It accomplishes this by executing multiple
 commands via CMD that modify registry keys and disabling Windows Defender scheduled tasks.

6. OutSteel: is a file uploader and document stealer developed with the scripting language.

 Page 40

https://unit42.paloaltonetworks.com/ukraine-targeted-outsteel-saintbot/

The first stage (delivery technique)

Some examples of the PDF and docx files that was used in this attack.

In the beginning, I will create a Word file that I will use to injections for a vulnerability that attackers used in the
actual attack to install payloads on the system.

April 2021: Bitcoin-themed spear phishing emails targeting Ukrainian government organizations.

 Page 41

The second stage (exploit Microsoft Office Memory Corruption Vulnerability CVE-2017-11882)

Second the attackers exploited the Zero-day vulnerability (CVE-2017-11882) is a vulnerability in
Microsoft Office, specifically affecting Microsoft Office 2007 Service Pack 3, Microsoft Office 2010 Service Pack 2,
Microsoft Office 2013 Service Pack 1, and Microsoft Office 2016. This vulnerability is classified as a memory corruption
issue that occurs due to improper handling of objects in memory.
Exploitation repository: https://github.com/0x09AL/CVE-2017-11882-metasploit?tab=readme-ov-file

This vulnerability allow an attacker to run arbitrary code in the context of the current user by failing to properly
handle objects in memory, I then placed a Word file in the phishing email, including links to Zip files containing
malicious shortcuts (LNK).

sudo cp cve_2017_11882.rb /usr/share/metasploit-framework/modules/exploits/windows/fileformat

sudo updatedb

msf6 > use exploit/windows/fileformat/office_ms17_11882

 Page 42

https://github.com/0x09AL/CVE-2017-11882-metasploit?tab=readme-ov-file

The third stage (Data Exfiltration) over Discord API C2 Channe

The attackers used the Discord C2 (Command and Control) API as a means to establish a communication channel
between their payload and the attacker's server. By using Discord as a C2 server, attackers can hide their malicious
activities among the legitimate traffic to Discord, making it harder for security teams to detect the threat.

First, i need to create a Discord account and activate its permissions, as shown in the following fi gure

1. Create Discord Application.

 Page 43

2. Configure Discord Application.

3. Go to "Bot", find "Privileged Gateway Intents", turn on all three "Intents", and save.

 Page 44

The fourth stage (SaintBot payload Loader)

This script integrates Discord API functionality to facilitate communication between the compromised system and
the attacker-controlled server, thereby potentially hiding the traffic within legitimate Discord communication and
checks if the Discord bot token and channel ID are provided.
If they are, it starts the Discord bot functionalities; otherwise, it proceeds with just the IP and port.
This way, the script can continue the connection without the Discord details if they are not entered.

SaintBot is a recently discovered malware loader, documented in April 2021 by MalwareBytes. It contains

capabilities to download further payloads as requested by threat actors, executing the payloads through several

different means, such as injecting into a spawned process or loading into local memory. It can also upd ate itself on

disk – and remove any traces of its existence – as and when needed. SHA-256:

e8207e8c31a8613112223d126d4f12e7a5f8caf4acaaf40834302ce49f37cc9c

1.Locale Check: The IsSupportedLocale function checks if the system's locale matches specific locales.

2.Downloading Payload: The DownloadPayload function downloads a file from a specified URL and saves it to a

 specified filepath.

 Page 45

The fifth stage (disable windows defender)

3. Injecting into a Process: The InjectIntoProcess function injects a DLL into a running process by its name.

4. Self-Deleting: The SelfDelete function deletes the executable after its execution.

This batch file is used to disable Windows Defender functionality. It accomplishes this by executing multiple

commands via CMD that modify registry keys and disabl ing Windows Defender scheduled tasks.

 Page 46

The sixth stage (OutSteel stealer)

OutSteel is a file uploader and document stealer developed with the scripting language AutoIT. It is executed along

with the other binaries. It begins by scanning through the local disk in search of file s containing specific extensions,

before uploading those files to a hardcoded command and control (C2) server. I simulated this Infostealer but

through PowerShell Script.

 Page 47

Primitive Bear

This is a simulation of attack by (Primitive Bear) APT group targeting the State Migration Service of Ukraine the attack
campaign was active from first of December to June 2021, The attack chain starts with Word document sent to the
victim via email then VBS payload is used to obtain the command and control, before placing the payload or injecting
it into the Word file an obfuscation of the payload is done to create an evasion of the detection then it is injected
through the macro into the Word document, Then i create an SFX archive and put the payload Word file inside it to
get command and control and use this SFX archive to perform a spear phishing attack then i get command and
control by opening the Word file. I relied on palo alto networks to figure out the details to make this
simulation: https://unit42.paloaltonetworks.com/gamaredon-primitive-bear-ukraine-update-2021/

1. Create the Word Document: Write a Word document (.doc or .docx) containing the macro with the obfuscated VBS
 payload. The macro should be designed to execute the payload when the document is opened.

2. Create a VBScript payload designed to establish a reverse connection to the Command and Control (C2) server.
3. Obfuscate the VBS Payload: Obfuscate the VBS payload to make it more difficult to detect by antivirus software or
 security solutions.

4. Create a Self-Extracting Archive with WinRAR: Use WinRAR to create a self-extracting (SFX) archive. Add the Word
 document containing the macro and the obfuscated VBS payload to the archive.

5. Place the obfuscated VBS payload and word file inside the SFX archive to send to the target.

6. Final result make remote communication by utilizes DES encryption for secure data transmission between the
 attacker server and the target.

 Page 48

https://unit42.paloaltonetworks.com/gamaredon-primitive-bear-ukraine-update-2021/

The first stage (delivery technique)

I began by drafting the phishing email in a Word document for the upcoming attack. Subsequently, prior to crafting
the payload, which will consist of a VBS Script injected into macros, I will encapsulate them within an SFX file. The
assault targeted the Ukrainian Immigration Department, with the phishing correspondence purporting to offer
financial assistance totaling 2 billion dollars.

This word file will be used to place the VBS script payload into it after obfuscation here will help make detection
more difficult when placing this VBS script inside the macro in word file.

 Page 49

The Second stage (VBScript payload)

The third stage (Obfuscation VBS payload)

First i will create a VBS payload which is a simple VBS script designed to establish a reverse connection to the C2
server then open a Word file enable macros and insert the payload into the macro finally i will save the document.

But before I put the VBS payload in the macro i will make an obfuscate to the scripts to make it difficult to detect
and i used online VBScript obfuscator to make obfuscate: https://isvbscriptdead.com/vbs-obfuscator/

 Page 50

https://isvbscriptdead.com/vbs-obfuscator/

The fourth stage (implanting technique)

Now i will place the obfuscated VBS payload in the microsoft Word File by opening the View menu clicking on Micros,
and creating a new macro file.

Save the Word file with the obfuscated VBScript payload embedded in the macro, thus i will be able to execute for
the payload file when opening word file.

 Page 51

The fifth stage (make SFX archive)

Final result (payload connect to C2-server)

Now i will create SFX Archive using WinRAR and take the SFX file
that contains the Word Document inside it with obfuscated VBS
payload via the macro and send it in a spear phishing.

1. Open WinRAR and select the files to be included in the archive.

2. Go to the "Add" menu and choose "Add to archive..."

3. In the "Archive name and parameters" window, select "SFX"
 as the archive format.

4. Configure the SFX options as desired, including the extraction
 path and execution parameters.

This Perl C2 server script enable to make remote communication by utilizes DES encryption for secure data
transmission between the attacker server and the target.

get_attacker_info and get_port: Prompts for the IP address and port number.

get_des_key: Prompts for a DES key of 8 bytes.

encrypt_data: Encrypts command results using DES with padding.

main: Sets up a TCP server, accepts connections, executes commands, encrypts results, and sends

them to the client

 Page 52

Voodoo Bear APT44

This is a simulation of attack by (Voodoo Bear) APT44 group targeting entities in Eastern Europe the attack campaign
was active as early as mid-2022, The attack chain starts with backdoor which is a DLL targets both 32-bit and 64-bit
Windows environments, It gathers information and fingerprints the user and the machine then sends the information
to the attackers-controlled C2, The backdoor uses a multi-threaded approach, and leverages event objects for data
synchronization and signaling across threads. I relied on withsecure tofigure out the details to make
 this simulation: https://labs.withsecure.com/publications/kapeka

Kapeka, which means “little stork” in Russian, is a flexible backdoor written in C++. It allows the threat actors to use
it as an early stage toolkit, while also providing long term persistence to the victim network. Kapeka’s dropper is a
32-bit Windows executable that drops and launches the backdoor on a victim machine. The dropper also sets up
persistence by creating a scheduled task or autorun registry. Finally, the dropper removes itself from the system. If
you need to know more about Kapeka backdoor for Voodoo Bear APT group:

1. RSA C2-Server: I developed C2 server script enable to make remote communication by utilizes RSA encryption for
 secure data transmission between the attacker server and the target.

2. Testing payload : I used payload written by Python only to test C2 (testing payload.py), if there were any problems
 with the connection (just for test connection) before writing the actual payload.

3. DLL backdoor: I have developed a simulation of the kapeka backdoor that the attackers used in the actual attack

 Page 53

https://labs.withsecure.com/publications/kapeka

The first stage (RSA C2-Server)

This PHP C2 server script enable to make remote communication by utilizes RSA encryption for secure data
transmission between the attacker server and the target.

rsa_encrypt($data, $public_key):

Purpose: Encrypts data using the RSA public key. Process: The function takes the data and the public key as input,
then uses openssl_public_encrypt to encrypt the data with the provided public key. Output: Returns the encrypted
data.

rsa_decrypt($data, $private_key):

Purpose: Decrypts data using the RSA private key. Process: The function takes the encrypted data and the private key
as input, then uses openssl_private_decrypt to decrypt the data with the provided private key. Output: Returns the
decrypted data.

 Page 54

The Second stage (Testing payload)

I used payload written by Python only to test C2 (testing payload.py), if there were any problems with the connection

(just for test connection) before writing the actual payload.

RSA and PKCS1_OAEP from pycryptodome: For encryption and decryption using RSA.
rsa_encrypt(data, public_key): Encrypts data using the provided public key.
rsa_decrypt(data, private_key): Decrypts data using the provided private key (not used in this script).

Note: Ensure that the server is correctly sending RSA-encrypted commands and handling the responses
 appropriately. The script requires the pycryptodome library for RSA encryption and decryption: pip install
 pycryptodome

 Page 55

The third stage (kapeka backdoor)

The Kapeka backdoor is a Windows DLL containing one function which has been exported by ordinal2 (rather than
by name). The backdoor is written in C++ and compiled (linker 14.16) using Visual Studio 2017 (15.9). The backdoor
file masquerades as a Microsoft Word Add-In with its extension (.wll), but in reality it is a DLL file.
I have developed a simulation of the kapeka backdoor that the attackers used in the actual attack.
In total, the backdoor launches four main threads:

• First thread: This is the primary thread which performs the initialization and exit routine, as well as C2 polling to
 receive tasks or an updated C2 configuration.

• Second thread: Monitors for Windows log off events, signaling the primary thread to perform the backdoor’s
 graceful exit routine upon log off.

• Third thread: Monitors for incoming tasks to be processed. This thread launches subsequent threads to execute
 each received task.

• Fourth thread: Monitors for completion of tasks to send back the processed task results to the C2.

manual compile:x86_64-w64-mingw32-g++ -shared -o kapeka_backdoor.dll kapeka_backdoor.cpp -lws2_32

Run the DLL:rundll32.exe kapeka_backdoor.dll,ExportedFunction –d

 Page 56

All of these attacks were simulated, and the tools and tactics were developed by

Abdulrahman Ali (S3N4T0R).

LinkedIn: /in/abdulrehman-a-4472a3243/

Github:/S3N4T0R-0X0

Disclaimer : This is for research, awareness, and educational purposes.Disclaimer I am not responsible if
anyone uses this technique for illegal purposes.
All of this adversary simulation is powered by Bear-C2.

To be continued...

 Page 57

