$ BLACKDUCK

2025 Open Source Security
and Risk Analysis Report

Table of contents

Welcome to the 2025 OSSRA REPOIToviiieiee e 1
Who Should Read ThiS REPOI ..o 1
What You'll Learn and WY T IMLEIS ... 2
About This Report's Data and Black DUCK AUAITS ..o 3

OUur FINdiNgS @t @ GIANCEeeeiieeeeeee e 4

Looking at Open Source Risk and Vulnerabilitiesccccooooiiiiii 7
Software Security Begins with Visibility into YOUr COAE ... 7
Understanding Risk Management and Gaining Visibility into Your COde...........cccooioiiiiiiiiiiiie, 8
Enhancing Software Security and Transparency with SCA and SBOMSooooiioiiiioieeeeee. 8
Analyzing the Impact of @ VUINErability ... 11
Log4j and Equifax: Two Lessons on the Need for Visibility into Your Code ... 12
The Top High-and Critical-Risk VUINErabiliti©S...........ocooioiioooeooeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 13
What the Data TeIIS US ... 18
INAUSTIY-SPECITIC INSIGNTS ..o 18

OPEN SOUICE LICENSINGuiiiiiiiicieeeeeee e e e e e e e e e e aaaa e 19
How Conflicts, Variants, and Lack of LiCenses Create RiSKo 19
The Impact of Transitive Dependencies on License ConfliCtS ... 20
The Top 10 Open Source LiIcenses Of 2024 ... 20
What Are Permissive, Weak Copyleft, and Reciprocal Open Source LICeNSeS?..........cooovvveeeeeieeee, 21
How to Manage Open Source License Risk With SCA ... 21
Industry Perspectives on LICENSE CONTIICTS ... 22
IFYOU ANLICIDAte @N M&A .. e 23

Maintenance and Operational Factors Impacting Riskccccccooooiiiiiiiiiinl 25

Conclusion: The More Things Change.............ooooiiiieiiiii e 27
Key ReCOMMENAATIONS ... 28

Welcome to the 2025 OSSRA Report

Open source software (OSS) has revolutionized application development, providing a vast repository
of prebuilt components that offer numerous benefits such as cost savings, flexibility, and scalability.
However, with all those benefits comes risks that every organization using open source needs to be
prepared to acknowledge and address.

The 2025 “Open Source Security and Risk Analysis” (OSSRA) report details key findings from Black
Duck® audit data, including security vulnerabilities, licensing issues, component maintenance,

and industry trends. Our analysis shows that open source is ubiquitous, and that it can introduce
significant risk unless properly identified and managed.

J
p
“He will win who has prepared himself.”
—Sun Tzu
N

Who Should Read This Report

The findings of this report will be beneficial for a variety of readers, particularly those involved in securing the software
supply chain, as well as those directly involved in software development, security and risk management, and merger
and acquisition (M&A) activities.

Developers will gain insights into the types of vulnerabilities that we found prevalent in open source software, such
as cross-site scripting (XSS) and denial-of-service (DoS) vulnerabilities. For example, the OSSRA report highlights the
importance of following input validation and sanitization techniques, which can help developers build more-secure
applications.

Further, this report identifies the most common open source components containing vulnerabilities, which will

aid developers in making informed decisions when selecting open source libraries and frameworks. For example,
development teams should be aware that our data shows that jQuery, jackson-databind, and the Spring Framework
often include vulnerabilities that require regular management and patching.

OSSRA 2025 also emphasizes the risks associated with using out-of-date components and the need for all
organizations to implement a process for timely updates. As one example, 90% of audited codebases were found to
have open source components more than four years out-of-date. Outdated components magnify security risk, provide
attackers with an expanded attack surface, and create compliance and compatibility issues. The presence of older open
source also suggests that developers are not taking advantage of software improvements and are relying on code that
is no longer being maintained.

2025 Open Source Security and Risk Analysis report | 1

Readers with a security focus can leverage the data presented in OSSRA 2025 to improve their vulnerability management
processes. For example, the report identifies the top common vulnerabilities and exposures (CVEs) found in our audits, as
well as their relationship to common software weaknesses (CWEs).

Risk management professionals can use OSSRA data to inform their strategic decisions about open source software
adoption and risk mitigation. The ability to compare vulnerability percentages and other metrics across industries can help
risk managers pinpoint areas where their organization is performing well or needs improvement.

The OSSRA data, primarily derived from analysis of M&A targets’ code, provides key insights for professionals involved
in merger and acquisition transactions into the kinds of issues they may be taking on in their own transactions, such as
common open source license conflicts, the security posture of the target company, and potential operational challenges
that could impact the target's IP value.

What You'll Learn and Why It Matters

There’'s much more open source in your software than you think: Ninety-seven percent of the codebases we evaluated)
contained open source, with an average 911 OSS components found per application. From an industry perspective, the
percentages ranged from 100% in the Computer Hardware and Semiconductors, EdTech, and Internet and Mobile Apps
sectors, to a “low” of 79% for Manufacturing, Industrials, and Robotics.

I
4 Open source codebases are getting bigger and more complicated: Our data shows that the number of open source
files in an average application has tripled in just the last four years. One of the reasons behind this is the use of “transitive
dependencies’—open source libraries that other software components rely on to function. Open source frequently uses other
open source. Our audits found that 64% of open source components identified in our scans were transitive dependencies,
most nearly impossible to locate or track without using an automated tool. Finding all instances of a transitive dependency
_ can be like searching for a needle in a haystack when you lack an up-to-date inventory of third-party code.)

Where all this open source is coming from: Our audits show that the majority of open source is being downloaded from)
package manager repositories. Over 280,000 of the nearly 1 million OSS components found in our audits originated from
one such repository—npm, a massive public database of JavaScript packages.

4 Whether you think of open source as “free” or not, it comes at a cost: The odds are better than 80% that an application)
your organization is using right now contains high- or critical-risk open source vulnerabilities, with nearly half of those
_ introduced by transitive dependencies. Y.

4 Transitive dependencies present licensing and maintenance issues as well as security challenges: Our audits found that N
over half the codebases contained license conflicts, many caused by a transitive dependencies’ incompatibility with another
\ component’s license. Nearly 30% of component license conflicts found in our audits were caused by transitive dependenciesj
I

/" Static application security testing (SAST) and dynamic application security testing (DAST) can help identify coding N
errors: These testing methods can find errors such as input validation and sensitive information exposure, and mistakes

like not encrypting important data when it's being sent over the internet, outdated or weak encryption methods, and failing
to properly protect passwords or other secret information.

Every organization using web applications and services should be evaluating them with software composition analysis
(SCA) and DAST tools: Development and security teams need to implement a multifaceted security approach integrating
DAST, SAST, and SCA to achieve the comprehensive security coverage modern software demands. Our findings indicate

that if such a full-spectrum approach were applied, potential exposure to critical vulnerabilities would be markedly reduced.

About This Report’s Data and Black Duck Audits

This report uses data from the Black Duck Audit team'’s evaluation of anonymized findings from 1,658 analyses of 965
commercial codebases across 16 industries during 2024 (see note below).

Black Duck offers a range of services including open source audits tailored to diverse needs and objectives. Open
source audits leverage a combination of automated tools, comprehensive databases, and expert analysis to provide
a thorough assessment of an organization's OSS usage. Built over two decades, the Black Duck KnowledgeBase™,

a key component of these audits, contains data on millions of open source components, including their licenses,
vulnerabilities, and potential risks. Sourced and curated by the Black Duck Cybersecurity Research Center (CyRC),
the KnowledgeBase includes data on more than 7.8 million open source components from over 31,000 forges and
repositories.

A Black Duck open source audit typically involves the following steps:

» Codebase submission: An organization provides Black Duck with access to the codebase to be audited. This includes
source code, binaries, and other relevant artifacts.

+ Automated analysis: Black Duck utilizes its suite of automated tools, including its SCA solution, to scan the codebase
and identify all open source components and those components’ dependencies, including transitive dependencies,
through advanced string search capabilities.

+ Expert review: Black Duck’s team of open source experts reviews the results of the automated analysis, validates the
findings, and ensures completeness and accuracy.

» Report generation: Black Duck generates a comprehensive set of reports that provide a detailed Software Bill of
Materials (SBOM) of all open source components, their associated licenses, known security vulnerabilities, and
potential operational risks. The reports also detail the issues cataloged in the SBOM.

+ Remediation guidance: Black Duck provides guidance on how to address the identified issues, such as updating
vulnerable components, resolving license conflicts, and mitigating operational risks.

Note: Several improvements to how the Black Duck Audit team evaluates and presents audit data were implemented
during 2024. Notably, a single submitted customer codebase is now split into multiple analyses called “projects.” The
new technique provides a more granular approach to analyzing codebases and offers several benefits to customers
including more-detailed reports and more-accurate component identification and dependency tracking. The changes
also affect how audit data is presented. For example, while for simplicity’s sake we still refer to “codebases” in

the OSSRA, at a more granular level those codebases entail the analysis of 1,658 individual projects from the 965
codebases submitted to Black Duck in 2024.

Our Findings at a Glance

/
1 ,658 projects scanned by Black Duck audits

97°/o of the codebases contained open source
70°/o of scanned code had its origin in open source
An average

of OSS components
were transitive
dependencies

911 64%

0SS components were
found per application

The number of open source
files in an average
application has tripled in
the last four years.

4)
Over 280,000 of the open source components But not all. For example, use of Rust package
found in our audits originated from the npm repositories has increased considerably as
repository. Most OSS packages found in our developers respond to memory safety issues
scans were written in JavaScript. in C and C++.

Originating Language No. of components Originating Language No. of components
repository found in 2024 audits repository found in 2024 audits
npm JavaScript 282,521 Cargo Rust 33,327
yarn (JavaScript) JavaScript 162,327 Nuget C#, Visual Basic, 29,818
F#, WiX, C++, Q#

pnpm (JavaScript) JavaScript 24,069

go_mod Go 24,069

Maven Java 14,097

packagist PHP 6,112

Gradle Java, C, JavaScript 4,615

Our Findings at a Glance

ofje L] L] \
Vulnerabilities and Security
o
86% 81% 8 of the
) of risk-assessed
of ;lslt:-assessetd ined codebases contained top 1 0
sglnzrzgﬁasocoenn 22;% high- or critical-risk high-risk vulnerabilities
P vulnerabilities were found in jQuery
J
Percentage of codebases
Industry containing high-risk vulnerabilities
Internet and Mobile Apps 100%
Marketing Tech 88%
Computer Hardware and Semiconductors 87%
EdTech 86%
Enterprise Software/SaaS 86%
Financial Services and FinTech 83%

Healthcare, Health Tech, Life Sciences 80%
Retail and eCommerce 80%
Big Data, Al, Bl, Machine Learning 80%
Cybersecurity 79%

Internet and Software Infrastructure 78%

Aerospace, Aviation, Automotive, Transport, Logistics 76%

Internet of Things 72%
Virtual Reality, Gaming, Entertainment, Media 71%

Manufacturing, Industrials, Robotics 63%

Energy and Clean Tech 60%

Figure 1: Codebases Containing High-Risk Vulnerabilities by Industry
2025 Open Source Security and Risk Analysis report | 5

Our Findings at a Glance

Licensing

of all codebases had 0SS components with no license

0y of all codebases had
56 /o license conflicts 33% or customized license language, typically comments by
the developer about how the software is to be used

Maintenance and Operational Risk

9 1 o/ of all codebases contained 900/ of all codebases contained components more than 10
O outdated 0SS components O versions behind the most current version

Percentage of codebases
Industry containing license conflicts

EdTech 71%
Big Data, Al, Bl, Machine Learning 71%
Financial Services and FinTech 66%
Internet and Mobile Apps 64%

Computer Hardware and Semiconductors 63%

Aerospace, Aviation, Automotive, Transport, Logistics 61%
Cybersecurity 58%
Retail and eCommerce 57%
Marketing Tech 56%

Enterprise Software/SaaS 54%

Manufacturing, Industrials, Robotics 53%

Virtual Reality, Gaming, Entertainment, Media 51%
Internet and Software Infrastructure 50%
Internet of Things 48%
Healthcare, Health Tech, Life Sciences 47%

Energy and Clean Tech 37%

Figure 2: Codebases Containing License Conflicts by Industry

2025 Open Source Security and Risk Analysis report | 6

Looking at Open Source Risk and Vulnerabilities

All Black Duck audits examine open source license compliance. Customers can opt out of the vulnerability/operational
risk assessment portion of the audit at their discretion. During 2024, the Black Duck Audit team conducted vulnerability/
operational risk assessments on 901 customer codebases. The data in this section and the “Maintenance and
Operational Factors Impacting Risk” section are based on those assessments.

Software Security Begins with Visibility into Your Code

o (" N\ N\
86 /O I} Maximum number Mean number

of the codebases contained at vulc:el:rai;::;.ilt?es vurr:el::;::lt:t?es
least one vulnerability . .
found in a single per codebase

codebase
s1% @l
of the codebases contained high- 3 7 5 4 8 1 5 4
. J

or critical-risk vulnerabilities

4 Components Percentage of codebases containing the component

jQuery 32%
jQuery Ul 16%
Bootstrap (Twitter) 15%
Spring Framework 12%
Lodash 12%
Netty Project 1%
jackson-databind 9%

Apache Tomcat 8%

Python programming language 5%

TensorFlow 1%

Understanding Risk Management and Gaining
Visibility into Your Code

Effective open source risk management is not about finding and fixing every vulnerability—a Sisyphean task if ever there
was one. Rather, risk management is about gaining the knowledge necessary to make informed decisions regarding risk
to your code. For example, once a vulnerability is identified, you can assess its severity, likelihood of exploitation, and
potential impact on your systems. Likewise, not every license conflict or code quality issue may be a high priority for
every organization. Focusing on the most critical issues is essential for efficient open source risk management.

But you must first be aware of those issues to address them. Insight into your code is key to prioritizing remediation
efforts. To gain that insight, organizations are increasingly adopting SBOMs, comprehensive inventories of all software

components and their dependencies.

“Less certainty requires more inquiry.”
—Erik Seidel

Enhancing Software Security and Transparency with
SCA and SBOMs

An SBOM is a formal record containing the details and supply chain relationships of all the components used in building
software. It also serves as an inventory of all the constituent parts of a software application, including open source
libraries, third-party modules, frameworks, and their associated metadata, such as licenses and versions. SBOMs
provide transparency into the software’s composition, enabling organizations to understand what'’s running in their
environment and ultimately enabling security teams to understand risk, track dependencies, and audit software.

A study by the Linux Foundation found that organizations that generate SBOMs are better able to understand
dependencies across components in an application, monitor components for vulnerabilities, and manage OSS license
compliance. And a report by Gartner® highlights that SBOMs improve the visibility, transparency, security, and integrity
of proprietary and open source code in software supply chains. Many customers at the end of the software delivery
pipeline now make an SBOM a requirement in their vendor contracts.

In short, SBOMSs are essential for organizations to ensure the security, compliance, and overall health of their software
applications, providing benefits for

+ Risk management: |dentifying and managing risks in the software supply chain.
 Vulnerability management: Quickly identifying and mitigating known vulnerabilities.

+ License compliance: Ensuring compliance with open source and third-party licenses.
+ Software quality: Identifying outdated or unsupported components.

+ Mergers and acquisitions: Assessing legal and intellectual property (IP) risks associated with software components
during mergers and acquisitions.

2025 Open Source Security and Risk Analysis report | 8

 Secure software development: Enhancing secure software development practices as recommended by the U.S.
Cybersecurity and Infrastructure Security Agency (CISA), the SLSA (Supply Chain Levels for Software Artifacts)
Framework, and the NIST SSDF.

« Effective software development, deployment, and maintenance: Facilitating efficient software development
processes and life cycle management.

+ Consistent and readable dependency profiles: Providing a standardized and easily understandable representation of
application dependencies.

 Standardized dependency listing and automation: Ensuring consistency in the way dependencies are listed and
making automation easier.

N
SBOMs improve the visibility, transparency, security,
and integrity of proprietary and open source code
in software supply chains.

How SCA Tools Generate SBOMs

SCA tools generate an SBOM by

+ Code scanning: SCA tools scan the source code or binary files of a software project to identify all the components
and dependencies. These scanners utilize a variety of scanning methods, including

- Manifest scanning: Checks manifest files (e.g., package.json or Cargo.toml) for the dependencies listed.
— Binary scanning: Checks compiled binaries for any third-party code it can trace back to a specific library.
— Hybrid scanning: Uses a mix of manifest and binary scanning to ensure that no dependency slips through.

— Snippet scanning: Analyzes smaller parts of files or lines of code (“snippets”) and matches them against a
database of known full open source components.

+ Dependency analysis: SCA tools analyze the relationships between components, including direct and transitive
dependencies.

 Vulnerability and license identification: The tools compare the identified components against vulnerability databases
and license repositories to identify potential security risks and license compliance issues.

+ SBOM generation: Based on the information gathered from the analysis, SCA tools create a comprehensive SBOM in
a standardized format, such as SPDX or CycloneDX.

 Continuous monitoring: SCA tools often provide continuous monitoring capabilities to keep the SBOM up-to-date.
As new vulnerabilities or updates for open source components become available, the tool can update the SBOM
accordingly, ensuring its accuracy over time.

For example, Black Duck® SCA can be integrated into the software development life cycle to generate SBOMs as
software is developed. Black Duck SCA also allows users to import third-party SBOMs so that those components can be
added to relevant projects, continuously analyzed for risk, and added to any reports or SBOMs generated as part of the
application life cycle. At the end of the software delivery pipeline, the SBOM for the software that has been analyzed can
be exported into an industry-standard file format.

2025 Open Source Security and Risk Analysis report | 9

Tracking Transitive Dependencies

Transitive dependencies occur when a software component depends on another component, which in turn depends on
other components. These dependencies can create complex relationships that are difficult to track manually. SBOMs
generated by SCA tools can help teams identify and track all transitive dependencies, providing organizations with a
complete picture of their software supply chain.

Addressing Vulnerability, License and IP, and Code Quality Issues

SBOMs enable organizations to proactively identify and address vulnerabilities before a security breach occurs. By
analyzing the SBOM, security teams can identify vulnerabilities in third-party components and determine whether they
are up-to-date and properly configured. This proactive approach helps reduce the risk of security breaches and ensures
that software is built on a solid foundation.

SBOMSs can be used to ensure that all components meet compliance requirements and help organizations track

the licenses associated with their software components, creating a more open and scalable path for managing
license compliance risks and meeting necessary obligations. SBOMs can also help organizations identify outdated or
unsupported components that may pose security risks or performance issues. This information enables organizations
to prioritize updates. By identifying and addressing code quality issues early on, organizations can reduce the risk of
security breaches, improve software performance, and enhance maintainability.

SBOM Adoption

The benefits offered by SBOMs make them an increasingly essential component of secure software development
practices. While SBOM adoption is still evolving and the rate of adoption varies across industries and organizations,
there is a growing recognition that SBOMs are a valuable tool for managing software supply chain risks and ensuring
software security. A 2022 study by the Linux Foundation found that 78% of organizations were expected to produce
an SBOM that year. And according to research conducted by Censuswide in 2023, 60% of large enterprises (over S50
million in annual revenue) require an SBOM from their vendors.

4)

Apache Commons Email 1.2 Short Term Upgrade Recommendation

2 Known Vulnerabilities
1.18

Has no known vulnerabilities

Identifier Overall Score ~ Status CWE

> BDSA-2017-0721 (CVE-2017-9801) /\ Reachable Medium = CWE-20, CWE-93
S BDSA-2018-0558 (CVE-2018-1294) /i Reachable Medum 3 CWE-144

Analyzing the Impact of a Vulnerability

When an SCA tool identifies vulnerabilities in your application, how can you decide which vulnerability to focus on
first? While the presence of a vulnerability indicates a potential weakness, it doesn't necessarily mean it can be easily
exploited—that is, will be used by malicious actors to compromise systems, applications, or networks.

Imagine a complex network of roads connecting various cities. Some roads might be
heavily trafficked, while others are rarely used. Similarly, in software applications, different
parts of the code are accessed with varying frequency. Reachability and impact analysis

helps determine if a vulnerability exists on a "busy road” within your (L
application’s code, making it more likely to
be exploited.
S %
|
o)

For example, the #1 vulnerability found in our scans, CVE-2020-11023,

is an XSS vulnerability impacting vulnerable versions of jQuery. The

highest threat from this vulnerability is to data confidentiality and

integrity. It's also listed in CISA's Known Exploited Vulnerabilities

.« Catalog, indicating that it has been actively exploited. Depending on
the specific circumstances, these factors might drive organizations
to assign a higher priority to addressing this vulnerability than to other
vulnerabilities in their codebases.

|
. aEnes -
!
|

Exploitability depends on various factors, including the availability of exploit code, the complexity required to exploit

the vulnerability (that is, the level of difficulty an attacker would face), and the potential rewards an attacker might gain
from exploitation. For example, the Heartbleed vulnerability, discovered in 2014, was a significant security flaw in the
OpenSSL cryptographic library that impacted millions of websites and servers because it was easily exploitable and
allowed attackers to steal sensitive information. One notable victim was the Canada Revenue Agency (CRA), which
reported that hackers exploited the vulnerability to steal Canadian social insurance numbers. The CRA was forced to
shut down its online services temporarily to address the issue and extend tax filing deadlines. CloudFlare, a web security
company, estimated that revoking and reissuing SSL certificates for its customers would cost the certificate issuer
around $400,000 per month.

How SCA Tools Can Help

SCA tools can prioritize vulnerabilities based on various factors, including severity, exploitability, and potential impact.
This helps organizations focus on the most critical vulnerabilities, optimize their remediation efforts, and reduce the
very real problem of alert fatigue by filtering out irrelevant issues. Simply identifying vulnerabilities is insufficient; their
sheer scale makes it necessary to have an intelligent way of understanding which ones need to be fixed first.

Black Duck SCA prioritizes vulnerabilities based on factors such as exploitability, remediation guidance, severity
scoring, and call path analysis. Black Duck can determine if vulnerable code is more likely to be invoked, and flags those
vulnerabilities as reachable, indicating that these vulnerabilities are a higher priority for remediation.

2025 Open Source Security and Risk Analysis report | 11

Log4j and Equifax: Two Lessons on the Need for
Visibility into Your Code

Although somewhat lost in the contemporary media frenzies surrounding them, the Log4Shell vulnerability of 2021
and the Equifax breach of 2017 are both reminders of the importance of visibility into the open source you're using. In
both cases, a lack of awareness of the open source components in use were contributing factors to the severity of the
incidents.

In the case of Log4j, many development teams didn't know where, how, or even if their applications were using the
open source logging utility, often because it was buried several dependencies deep within an application and invisible
to basic code reviews. When CISA issued a directive to federal agencies to locate all instances of the Log4j library in
their software, check if their systems were vulnerable to the Log4Shell exploit, and patch affected servers—all within
10 days—many teams found themselves spending their December holidays in the office desperately trying to locate
vulnerable versions of Log4j as well as forestalling a potentially catastrophic security breach.

Vulnerable Contributing
component factors

é N ([N ()

Incident Key takeaway

Organizations need to
Lack of visibility be aware of all open
into software source components
Log4j —— Log4j2 library — supply chain, lack of |— in their applications,
awareness of Log4j even seemingly minor
use in applications ones like logging
libraries.

_ VAN O\ O\ J
é N ([N (N ()

Organizations

Apache Strut Lack of] need to maintain
Equifax L. ?ac € ”lj(s | comprehensive | | an accurate
ramewor inventory of IT inventory of all
assets

software assets.

_ VAN O\ O\ J

Although the explanation for the Equifax Apache Struts vulnerability exploit in 2017 has been simplified over the years
into the person who was responsible for communicating the need to apply the patch did not communicate to the right
level, the full reasons, as detailed in the Congressional report on the incident, are much more complicated.

Equifax had been on an acquisition spree for several years, with each acquisition adding to the complexity and opacity
of the company’s technology infrastructure. One part of that patchwork IT infrastructure was a web-based dispute and
disclosure application that became the primary target of the breach.

2025 Open Source Security and Risk Analysis report | 12

“It is critical for an organization to know what assets are
present within its I'T environments to make accurate and
informed risk determinations—such as when, and how,
to patch a vulnerable system.”

—The Equifax Data Breach, Majority Staff Report, 115" Congress, December 2018

J

As Equifax’s then-ClO explained in his testimony, Equifax did not have a clear picture of the software used by that
application. The lack of visibility into its software inventory was a known issue, documented two years earlier in an
Equifax internal audit. As the audit report related, “A comprehensive IT asset inventory does not exist nor does accurate
network documentation. [...] The lack of an accurate asset inventory makes it difficult to ensure all assets are adequately
patched and configured. [...] Without a firm understanding of the status of all IT assets, ensuring the security and
stability of Equifax systems is extremely difficult.”

Adding to the problem was that the application was—like many of Equifax’s older systems—a “legacy” in IT-speak. By
2017, there were few people left in Equifax who were familiar with that particular web application’s inner workings, to the
point that the person nominally in charge of its oversight hadn't known it contained Apache Struts software.

The Equifax case illustrates another aspect of the lack of visibility into open source that any business dependent on
other companies’ code would do well to remember: While you might have a good handle on your own code, do you
know what's in theirs?

The Top High- and Critical-Risk Vulnerabilities

Before diving into the specific high-risk vulnerabilities we found in our audits, let's clarify what the terms CVEs, CWEs,
and BDSAs mean. A CVE is a standardized identifier for publicly known cybersecurity vulnerabilities. When a vulnerability
is discovered, it is assigned a unique CVE ID, which allows security professionals and developers to quickly and easily
refer to and track that specific vulnerability. The National Vulnerability Database (NVD) utilizes the CVE standard as its
foundation for identifying and describing vulnerabilities.

On the other hand, a CWE is a community-developed list of software and hardware weakness types. CWEs serve
as a common language for describing security weaknesses, aiding in their identification, mitigation, and prevention.
As Figure 5 shows, reviewing a list of the most common CWEs behind the vulnerabilities found in our scans can be
instructive.

For example, given that over 70% of the overall open source vulnerabilities we found were linked to improper input
validation (which could lead to injection and XSS exploits), development and security teams might want to focus their
efforts on using appropriate validation techniques for their own code, and implement a regimen of regular testing of
third-party code with SAST and DAST to catch vulnerabilities early and continuously.

2025 Open Source Security and Risk Analysis report | 13

CWE

Percentage of
codebases with

vulns linked to CWE Description

CWE-20

71%

Improper Input Validation: The software does not validate or incorrectly validates
input that can affect the control flow or data flow of the program. This can lead to
vulnerabilities like buffer overflows, SQL injection, and cross-site scripting.

CWE-400

70%

Uncontrolled Resource Consumption: The software does not properly control the
allocation and release of system resources, such as memory, CPU time, or disk
space. This can lead to DoS attacks.

CWE-200

60%

Exposure of Sensitive Information to an Unauthorized Actor: The software
exposes sensitive information, such as passwords, credit card numbers, or
personal data, to unauthorized actors. This can happen through various means,
such as insecure storage, unencrypted transmission, or improper access controls.

CWE-79

56%

Improper Neutralization of Input During Web Page Generation (Cross-Site
Scripting): The software does not neutralize or incorrectly neutralizes user-
supplied input before including that input in an HTML page. This allows attackers
to inject malicious scripts that can steal user data or take control of their browser.

CWE-185

48%

Incorrect Regular Expression: The software specifies a regular expression in a
way that causes data to be improperly matched or compared. Regular expressions
should be subjected to thorough testing techniques such as equivalence
partitioning, boundary value analysis, and robustness testing.

CWE-770

48%

Allocation of Resources Without Limits or Throttling: The software allocates
resources without limits or throttling, which can allow an attacker to consume
excessive resources and cause a DoS.

CWE-80

44%

Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic
XSS): Similar to CWE-79, this weakness specifically focuses on the failure to
neutralize HTML tags that can be used to inject scripts.

CWE-1321

39%

Improperly Controlled Modification of Object Prototype Attributes: The software
allows attackers to modify the prototype of an object, which can affect all
instances of that object and lead to unexpected behavior or privilege escalation.

CWE-1333

36%

Inefficient Regular Expression Complexity: The software uses a regular
expression that is too complex, which can lead to excessive CPU consumption and
DoS attacks.

CWE-502

31%

Deserialization of Untrusted Data: The software deserializes untrusted data,
which can allow attackers to execute arbitrary code or manipulate application
logic.

Figure 5: Top CWEs Found in Codebase Scans

The Black Duck Security Advisories (BDSAs) noted in this report are a Black Duck-exclusive vulnerability data feed
sourced and curated by our CyRC. BDSAs offer deeper coverage for a wide set of vulnerabilities than is available through
the NVD. While providing more timely and detailed vulnerability insights, including severity, impact, and exploitability
metrics, BDSAs also provide actionable remediation guidance to save time by providing details on fixed versions, patch
information, exploits, and workarounds where available.

The CyRC team provides detailed vulnerability guidance over and beyond what the NVD typically provides in CVE
records. BDSAs are also cross-checked and validated against possibly affected component versions, resulting in
additional and more accurate mappings for components and versions affected by a given vulnerability.

Let's take a closer look at the top high- and critical-risk open source vulnerabilities we found in our scans.

Percentage of codebases
CVE/BDSA with CVE/BDSA

1. CVE-2020-11023 (BDSA-2020-0964) 33%
2. (CVE-2020-11022 (BDSA-2020-0686) 33%
3. CVE-2019-11358 (BDSA-2019-1138) 30%
4. BDSA-2014-0063 29%
5. CVE-2015-9251 (BDSA-2017-2930) 29%
6. BDSA-2015-0567 27%
7. CVE-2020-23064 (BDSA-2020-4841) 21%
8. CVE-2023-45133 (BDSA-2023-2769) 18%
9. CVE-2020-7656 (BDSA-2020-1173) 18%

10. CVE-2022-25883 (BDSA-2023-2207) 13%

Figure 6: Top High- and Critical-Risk Vulnerabilities Found

40 CVE-2020-11023

CVE-2020-11023 was found in a third (32.6% to be exact) of the scanned codebases. It is an XSS vulnerability that
affects jQuery versions greater than or equal to 1.0.3 and before 3.5.0 (at the time this report was released, the current
stable release of jQuery was 3.7.1, released in August 2023). Notably, CVE-2020-11023 is listed in CISA's Known
Exploited Vulnerabilities Catalog, indicating that it has been actively exploited.

The vulnerability allows untrusted code to be executed by manipulating how jQuery handles HTML containing <option>
elements from untrusted sources. This vulnerability has a wide-ranging impact, affecting various systems that utilize
jQuery including Debian Linux, Fedora, Drupal, and Oracle products.

2025 Open Source Security and Risk Analysis report | 15

The CWE associated with CVE-2020-11023 is CWE-79: Improper Neutralization of Input During Web Page Generation
(Cross-Site Scripting). This CWE, as we'll see with many other CVEs in this list, highlights a common security issue

in which user-supplied input is not properly sanitized before being included in web pages. This failure to neutralize
potentially malicious input can allow attackers to inject and execute malicious scripts in users’ browsers.

46 CVE-2020-11022

CVE-2020-11022 is another XSS vulnerability in jQuery, affecting versions greater than or equal to 1.2 and before 3.5.0.
This flaw enables attackers to inject JavaScript code into web pages by exploiting how jQuery’s DOM manipulation
methods handle input. Unlike CVE-2020-11023, this vulnerability is not listed in CISA's Known Exploited Vulnerabilities
Catalog, suggesting it might pose a lower immediate risk.

The CWE associated with CVE-2020-11022 is also CWE-79: Improper Neutralization of Input During Web Page
Generation (Cross-Site Scripting).

46 CVE-2019-11358

CVE-2019-11358 involves prototype pollution in jQuery versions before 3.4.0. Prototype pollution occurs when an
attacker can manipulate the prototype of an object, potentially affecting all objects that inherit from that prototype. This
can lead to unexpected behavior, denial of service, or even arbitrary code execution.

The CWE associated with CVE-2019-11358 is CWE-1321: Improperly Controlled Modification of Object Prototype
Attributes (Prototype Pollution). This CWE is a child of CWE-913: Improper Control of Dynamically Managed Code
Resources, which broadly categorizes weaknesses related to managing code resources during program execution.

46 BDSA-2014-0063

This is an older vulnerability, first raised as an issue in January 2014 and relating to a potential XSS vulnerability in
jQuery caused by a lack of user-supplied input validation. It does not have an associated CVE.

The vulnerability could allow an attacker to inject arbitrary web scripts and steal a victim's session cookies. The
vulnerability was mitigated in jQuery 3.0.0-rc1. However, the mitigation does not sanitize malicious input and will still
allow scripts to be executed. The default behavior of the parser is changed such that if the context is unspecified or
given as null/undefined, a new document is created. This delays execution of parsed HTML until it is injected into the
document, allowing the opportunity for tools to traverse the created DOM and remove unsafe content after the function
call.

As with several other of our top 10 vulnerabilities, the CWE associated with BDSA-2014-0063 is also CWE-79: Improper
Neutralization of Input During Web Page Generation (Cross-Site Scripting).

Ae CVE-2015-9251

CVE-2015-9251 is an XSS vulnerability in jQuery affecting versions before 3.0.0. (At the time this report was released,
the current stable release of jQuery was 3.7.1, released in August 2023.)

This vulnerability arises when cross-domain AJAX requests are made without specifying the dataType option, allowing
malicious JavaScript responses to be executed. While the primary CWE associated with CVE-2015-9257 is CWE-79:
Improper Neutralization of Input During Web Page Generation (Cross-Site Scripting), it's worth noting that it is also
related to CWE-94: Improper Control of Generation of Code (Code Injection) and CWE-74: Improper Neutralization of
Special Elements in Output Used by a Downstream Component (Injection).

2025 Open Source Security and Risk Analysis report | 16

Ae BDSA-2015-0567

This is another older vulnerability without a CVE, this time with jQuery vulnerable to arbitrary code execution. Versions
of jQuery that use an unpatched UglifyJS parser are vulnerable to arbitrary code execution through crafted JavaScript
files. Ultimately, this can allow attackers to run rogue code. The vulnerability was fixed in 1.12.0 and in 2.2.0. The CWE
associated with this BDSA is CWE-1395: Dependency on Vulnerable Third-Party Component.

CVE-2020-23064

o

CVE-2020-23064 is an XSS vulnerability found in jQuery versions 2.2.0 through 3.x before 3.5.0. This vulnerability allows
attackers to execute arbitrary code by exploiting the handling of the <options> element. It has a CVSS v3 base score of
6.1, indicating a medium severity level.

The CWE associated with CVE-2020-23064 is CWE-79: Improper Neutralization of Input During Web Page Generation
(Cross-Site Scripting).

—) cve202345133

CVE-2023-45133 is a vulnerability in Babel, a popular JavaScript compiler. It affects the @babel/traverse package and all
versions of babel-traverse. This vulnerability can lead to arbitrary code execution during the compilation process, when
handling malicious code crafted to exploit this flaw.

CVE-2023-45133 is associated with two CWEs: CWE-697: Incorrect Comparison and CWE-184: Incomplete List of
Disallowed Inputs. These CWEs indicate that the vulnerability stems from improper validation and handling of specific
inputs during the compilation process.

—€) cve-2020.7656

CVE-2020-7656 is yet another XSS vulnerability in jQuery, affecting versions prior to 1.9.0. This vulnerability occurs
because the load method fails to properly handle and remove <script> HTML tags that contain whitespace characters,
potentially allowing malicious scripts to be executed.

The CWE associated with CVE-2020-7656 is CWE-79: Improper Neutralization of Input During Web Page Generation
(Cross-Site Scripting).

—@ CVE-2022-25883

CVE-2022-25883 is a regular expression denial-of-service (ReDoS) vulnerability in the semver package used in certain
Node.js systems. This vulnerability affects specific versions of the package and can be triggered when untrusted user
data is processed as a range. ReDoS attacks exploit vulnerabilities in regular expressions, causing excessive processing
time and potentially leading to denial of service by consuming system resources.

The CWE associated with CVE-2022-25883 is CWE-1333: Inefficient Regular Expression Complexity. This vulnerability
can significantly impact system performance and stability, potentially disrupting services and applications.

2025 Open Source Security and Risk Analysis report | 17

What the Data Tells Us

Understanding CWEs is crucial for both developers and security professionals. CWEs provide a standardized way

to categorize and describe software weaknesses, enabling better communication and collaboration in addressing
security risks. By understanding common weaknesses, developers can implement secure coding practices to prevent
vulnerabilities, and security teams can effectively identify and mitigate potential threats.

The prevalence of CWE-79 in our results, and all the CVEs related to cross-site scripting exploits of jQuery vulnerabilities,
highlights the critical importance of input validation in web development. Failing to properly sanitize user input can have
serious consequences.

jQuery is not inherently insecure. In fact, it is a well-maintained open source library with a large community of users,
developers, and maintainers. But according to our audits, jQuery was the component most likely to have vulnerabilities—
indeed, nearly a third of all the codebases we scanned were found to have vulnerable jQuery components—even though
each of those vulnerabilities impacted outdated versions of jQuery and had available patches. It is important for users of
jQuery—and indeed of all open source—to be aware of the potential security risks associated with outdated versions of
software, and to take steps to address those risks.

For developers, our data emphasizes the need to prioritize input validation and sanitization techniques to prevent cross-
site scripting and other injection attacks. Utilizing security analysis tools such as Coverity®Static Analysis and Black
Duck® Continuous Dynamic (a production-safe DAST tool) to identify potential vulnerabilities arising from inadequate
checks on user-submitted data, like form inputs or APl parameters, can help ensure that only expected data formats
and values are accepted, thereby mitigating risks like SQL injection, cross-site scripting, and other injection attacks.

Staying up-to-date with security advisories and promptly patching vulnerable software is essential to minimizing the
risk of exploitation. Regularly updating libraries and frameworks, such as jQuery and Babel, is crucial to ensuring that
systems are protected against known vulnerabilities.

Industry-Specific Insights

As shown in Figure 1 on page 5, from a vulnerability perspective, high-risk industry sectors include Internet and Mobile
Apps (100% of codebases scanned from this sector contained high-risk vulnerabilities), Marketing Tech (88% of
codebases contained high-risk vulnerabilities), Computer Hardware and Semiconductors (87% of codebases contained
high-risk vulnerabilities), and the EdTech and Enterprise Software/SaaS sectors (86% of codebases contained high-risk
vulnerabilities).

It's worth noting that the lowest percentage of codebases containing high-risk vulnerabilities of all 16 sectors was 60%
in the Energy/Clean Tech industry. Overall, well over 50% of each respective industry’s codebases contained high-risk
vulnerabilities, making them attractive targets of opportunity for exploitation.

2025 Open Source Security and Risk Analysis report | 18

Open Source Licensing

-
——=e To be a programmer requires that you understand

as much law as you do technology.”

—Eric Allman

N\

All Black Duck audits examine open source license compliance. During 2024, the Black Duck Audit team conducted 965
audits. The data in this section is based on those assessments.

+ Percentage of codebases with license conflicts: 56%
+ Percentage of codebases containing open source with no license or a custom license: 33%

Effective open source management requires licensing as well as security compliance. You know the open source
components and libraries you're using are governed by licenses, but do you know those license details? Perhaps more
importantly, are your executives and legal counsel aware of those details in relation to your proprietary software?

Even one noncompliant license in your software could result in legal issues, loss of lucrative intellectual property, time-
consuming remediation efforts, and even delays in getting a product to market. In the case of our audit results, 56% of
customer codebases had license conflicts, opening them up to those potential scenarios.

How Conflicts, Variants, and Lack of Licenses
Create Risk

In the U.S. and other jurisdictions, creative work (including software) is protected by exclusive copyright by default. No
one can legally use, copy, distribute, or modify that software without explicit permission from the creator/author in the
form of a license that grants the right to do so.

In the context of open source software, a declared license conflict arises when the license of an open source
component clashes with the overall license declared for the entire project or codebase. This often happens when a
component with a restrictive license, like the GNU General Public License (GPL), is included in a commercial project,
potentially requiring the entire project’s source code to be released. The severity of a declared conflict can vary; it might
apply to the whole project or just specific files, depending on the scope of the license. A component license conflict
occurs when two open source licenses within a project are incompatible with each other.

Because of the way most open source licenses are written, conflicts can arise even when only a small piece of licensed
code—a snippet—is included in a larger work. Historically, this has occurred when a developer cut and pasted from an
open source project with a problematic license. Today, with the rise of generative Al models trained on open source, a
snippet may have been appropriated by an Al tool without regard for licensing.

2025 Open Source Security and Risk Analysis report | 19

Variants or customized versions of standard open source licenses can also place undesirable requirements on the
licensee and require legal evaluation for possible IP issues or other implications. The JSON license is often used as
an example of a customized license. Based on the permissive MIT license, the JSON license adds the restriction that
“The software shall be used for good, not evil.” While laudable, the ambiguity of this statement leaves its meaning up
to interpretation, and many counselors would advise against using software so licensed, especially in the context of
M&A scenarios. Since 2016, the Apache Foundation has disallowed software with this license to be used in any of its
projects.

Thirty-three percent of the 2024 audited codebases were using code with either no discernible license or a customized
license. It's not uncommon for developers to make code publicly available that has code without discernable terms of
service or mention of software terms. It's also not unusual for developers to grant permission to use their code either
by modifying or augmenting standard license terms—"good, not evil” for example—or adding usage, obligation, and
restriction terms in their code comments. Often, these types of modifications require legal review.

The Impact of Transitive Dependencies on License
Conflicts

Nearly 30% of component license conflicts found in our audits were caused by transitive dependencies (that is, a
component needed by a direct dependency and the overall software to function). If a transitive dependency uses a
strong restrictive license like the GPL, it can potentially affect the licensing of the entire application, even if the direct
dependency has a more permissive license. Many restrictive licenses often require derivative works to also be licensed
under the same terms.

The Top 10 Open Source Licenses of 2024

Percentage of scanned

License codebases containing license Risk* OSI approved
MIT License 92% Low Yes
Apache License 2.0 90% Low Yes
BSD 3-Clause “New” or “Revised” License 85% Low Yes
BSD 2-Clause “Simplified” License 74% Low Yes
ISC License 61% Low No
Generic Public Domain 57% Varies by Usage Yes
GNU Lesser General Public License v2.1 or Later 48% High Yes
The Unlicense 47% Low Yes
Creative Commons Zero v1.0 Universal 46% Varies by Usage No
Mozilla Public License 2.0 45% Medium Yes

* Risk classifications are guidelines and should not be used for decisions about using the open source software.
Consult your corporate policies and/or legal teams for guidance regarding license compliance.

Figure 7: Top 10 Open Source Licenses

2025 Open Source Security and Risk Analysis report | 20

What Are Permissive, Weak Copyleft, and Reciprocal
Open Source Licenses?

Low-Risk: Permissive Licenses

Permissive licenses generally do not have many limiting conditions. Rather, they usually require that you keep the
copyright notice in place when you distribute your own software. This means you can use and change the open
source software if you keep the copyright notices intact. MIT and Apache licenses, the two most popular licenses
currently in use, are in this category. We rate permissive licenses as low-risk licenses.

@ Medium-Risk: Weak Copyleft Licenses

Copyleft licenses generally include a reciprocity obligation stating that modified and extended versions are released
under the same terms and conditions as the original code. Weak copyleft licenses usually require you to make

any modifications to the source code available under the same terms of the given license. Some of these licenses
explicitly define what a modification is. For instance, a license might cite copying unmodified open source code into
proprietary code as a modification. To comply with the license obligations, you would have to release the source
code (original, modified, and newly added). Popular open source licenses in this category include the Mozilla public
license. We rate semipermissive licenses as medium-risk licenses.

@ High-Risk: Reciprocal/Copyleft Licenses

Some popular open source licenses, such as the GNU General Public License v2.0 or later and GNU Lesser General
Public License v3.0 or later, are quite restrictive. Depending on how you integrate open source software with your
proprietary software, you may face significant risk. In the worst-case scenario, you may be required to release your
proprietary software under the same license—royalty-free. We rate restrictive licenses as high-risk licenses.

How to Manage Open Source License Risk with SCA

If you build packaged, embedded, or commercial SaaS software, open source license compliance should be a key
concern for your organization. You need to determine the license types and terms for the open source components
you use and ensure that they are compatible with the packaging and distribution of your software. Even companies
whose software is not a commercial product and only used internally are still subject to the license terms of the open
source components in their software.

The first step to managing risk is using an automated SCA tool to create an up-to-date, accurate SBOM of all open
source components in your software, the versions in use, and their associated licenses. Compile the license texts
associated with those components so that you can flag any components not compatible with your software’s
distribution and license requirements, or not compatible with licenses that may be used by other components in your
software. It is important to ensure that the obligations of all licenses have been met, as even the most permissive
open source licenses still contain an obligation for attribution.

Black Duck SCA enables development, security, and compliance teams to manage the risks that come from the use of
open source. Black Duck’s multifactor open source detection and KnowledgeBase of over 7.8 million components can
provide an accurate SBOM, including licensing information, for any application or container. And although most open
source components use one of the most popular licenses, Black Duck provides an extra layer of information with data
on over 2,500 other open source licenses that could potentially impose restrictions on the software your team writes.
Tracking and managing open source with Black Duck helps you avoid license issues that can result in costly litigation
or compromise your valuable intellectual property.

2025 Open Source Security and Risk Analysis report | 21

Industry Perspectives on License Conflicts

Percentage of codebases

Industry containing license conflicts
71%
71%
o6°%
ou%
3%

Aerospace, Aviation, Automotive, Transport, Logistics 61%
s8%
7%
56%
sa%

Manufacturing, Industrials, Robotics 53%

Virtual Reality, Gaming, Entertainment, Media 51%

Internet and Software Infrastructure 50%
Internet of Things 48%
Healthcare, Health Tech, Life Sciences 47%

Energy and Clean Tech 37%

Figure 2: Codebases Containing License Conflicts by Industry

As noted on page 6 of this report, Figure 2 (reproduced above) highlights the prevalence of license conflicts within
codebases across various industries. It should serve as a signal to businesses on the importance of proactive license
identification to avoid costly legal and operational challenges arising from license conflicts within their software.

2025 Open Source Security and Risk Analysis report | 22

High-Risk Sectors

+ Tech-heavy industries like Big Data and Al, Financial Services and FinTech, and Computer Hardware exhibit a
significantly higher percentage of codebases with license conflicts. This is likely due to these industries’ heavy
reliance on software and services, and those applications themselves relying on open source components.

+ Many of these industries also tend to license and distribute their software as on-premises products. Most restrictive
licenses apply specifically to software that is distributed in this manner. Other industries with lower numbers may do
more subscription-based or SaaS-type deployments, which are not traditionally considered “distributing” and are not
subject to the same license terms.

+ EdTech also shows a surprisingly high percentage, indicating potential licensing issues within educational software
and platforms. Thanks to online learning and digital educational tools, the EdTech sector has experienced rapid
growth over the last several years. Many EdTech companies, especially startups and smaller organizations, also have
limited resources and expertise focused on software licensing.

Moderate Risk

+ Sectors including Aerospace, Cybersecurity, Manufacturing, and Enterprise Software demonstrate a moderate level of
risk. While the percentages are lower than the high-risk group, they still have a considerable chance of encountering
licensing problems.

Lower Risk (But Not Risk-Free)

+ Industries like Healthcare and Energy show a lower percentage of license conflicts. However, this doesn't imply
that they are immune to such issues. For example, Healthcare organizations rely on a wide range of software, from
electronic health records and medical imaging systems to telehealth platforms and Al-powered diagnostic tools.
This intricate ecosystem often involves integrating numerous third-party components and libraries, increasing the
possibility of licensing issues.

If You Anticipate an M&A

If your company plans to be involved with an M&A transaction at some point, either as seller or buyer, you will want to
involve your organization’s IP counsel or seek outside legal advice, as understanding licensing terms and conditions and
identifying conflicts among various licenses can be challenging. It's vital to get this right the first time—especially if you
build packaged or embedded software—because license terms are often more explicit for shipped software and harder
to mitigate after the fact. Knowing what open source code is in a company’s codebase is crucial for properly managing
its use and reuse, ensuring compliance with software licenses, and staying on top of patching vulnerabilities—all
essential steps in reducing business risk.

If you're on the buy side of a tech M&A transaction, an open source audit should be part of the software due diligence
process. A code audit enables a buyer to understand risks in the software that could affect the value of the intellectual
property, and the remediation required to address those risks. An open source audit can also be invaluable for
companies wanting a better understanding of the code’s composition. For example, using a range of tools such as
Black Duck SCA, expert auditors comprehensively identify the open source components in a codebase and flag legal
compliance issues related to those components, prioritizing issues based on their severity.

An audit uncovers known security vulnerabilities that affect open source components, as well as information such

as versions, duplications, and the state of a component’s development activity. It also provides clues as to the
sophistication of a target’s software development processes. Open source is so ubiquitous today that if a company isn't
managing that part of software development well, it raises questions about how well it is managing other aspects.

2025 Open Source Security and Risk Analysis report | 23

Acquirers need to identify problematic open source in the target’s code before the transaction terms are set, and a
trusted third-party audit is the best way to get a deep, comprehensive view. Identifying even permissively licensed open
source is valuable, as acquirers will want to ensure they will be able to comply with the attribution requirements of those
licenses. Sellers should prepare for questions about the composition of their code and how well they have managed
open source security and license risk. Proactive sellers may employ an audit in advance to avoid surprises in due
diligence, particularly given the amount of unknown open source in a typical company’s code.

By identifying open source code and third-party components and licenses, an open source audit can alert your firm to
potential legal and security issues in an M&A transaction.

4)
- Understand risks that
. . Mitigate legal
Avoid surprises may affect software [—
exposure
asset values
Resolve potential issues Build appropriate Plan integration and
before they affect the protections into the remediation of seller/
transaction deal terms buyer code

The bottom line is that significant monetary and brand risk can be buried in the open source components of acquired
code. Evaluating that risk as part of an acquirer’s due diligence must be part of the decision-making process in an M&A
transaction.

Maintenance and Operational Factors
Impacting Risk

Ideally, all of us would use only open source components sustained by robust communities. After all, support from large
and vibrant developer communities was one of the key benefits of OSS promised by open source champions when the
software was first introduced. Dedicated communities of developers would deliver enhanced code quality and security
while fostering regular improvements to the projects they were overseeing.

Unfortunately, that scenario never happened for many open source projects. As the Linux Foundation's Census Il of
Free and Open Source Software report (utilizing SCA data from Black Duck among other vendors) relates, much of the
most widely used open source today is developed and maintained by only a handful of contributors, not the thousands
or millions of developers popularly thought to be working behind the scenes. In reality, the small number of contributors
working to ensure updates—including feature improvements as well as security and stability updates—decreases over
time on almost all OSS projects.

When maintainers have stopped maintaining a project, one consequence is elevated security risk, as the data from our
scans shows.

Outdated Components

+ A very high percentage of codebases—90%—contain open source components that are more than four years out-
of-date. This indicates a widespread issue of outdated dependencies and could lead to security vulnerabilities and
compatibility issues.

Inactive Components

+ An equally high portion of codebases—91%—have components that have not seen new development in the past two
years. This suggests that many applications and web services are relying on OSS that no longer receive updates,
potentially leaving them vulnerable to undiscovered or unpatched security flaws.

+ Seventy-nine percent of codebases contain components with no activity for the last 24 months, while still using the
latest version of the component. This suggests that even up-to-date components are not being actively maintained.

- Eighty-eight percent of codebases have components with no activity for the last 24 months and are not using the
latest version of the component—an even riskier prospect for those using the components.

90% 88%

of codebases of codebases have of codebases contain of codebases have
contain open source components that components with no activity ~ components with no activity
components that are have not seen new for the last 24 months, while for the last 24 months and
more than four years development in the past still using the latest version are not using the latest
out-of-date two years of the component version of the component

2025 Open Source Security and Risk Analysis report | 25

Version Lag

+ The majority of codebases—91%—include OSS that is not the latest available version of that particular component.

+ Worse, 90% of codebases contain open source components that are more than 10 versions behind the most recent
release

A failure to keep up with current releases, which often include important bug fixes and security patches, increases risk
and technical debt.

There can be valid justifications for not keeping an open source component up-to-date. Major version updates can
introduce significant changes that might break your existing code, especially if you've already fallen several versions
behind. Sometimes the effort required to adapt your code isn't feasible. Updating can be time-consuming, requiring
development time, testing, and deployment. Smaller teams or projects with limited resources might need to prioritize
more critical tasks.

But, as we've noted in a decade of publishing OSSRA reports, open source is different from commercial software—not
worse, not better, but different—and it requires different techniques when it comes to maintenance. For example, all
organizations that use commercial software are familiar with patches and updates being “pushed” to their software, or
at a minimum, receiving a notice from the vendor that an update is available for download. That's seldom the case with
open source, where users are largely left to their own initiative to stay aware of a component’s status.

Given that reality, how do you stay aware of updates?

(Follow project websites and repositories: Most open source projects have websites, blogs, or repositories (like \
GitHub) where they announce new releases and provide changelogs. Subscribe to their mailing lists or RSS feeds
to stay informed. However, with the number of open source components in a typical application today, manually

Ktracking is impractical, so automated approaches become more critical. j

(Use package managers: Package managers (like npm, pip, or Bundler) often provide notifications about \
available updates and can automate the update process. The vast majority of open source identified in our scans
originated from npm, which provides a variety of tools to upgrade packages. For example, running npm outdated

Kwill generate a list of packages that have available updates. j

J

Utilize version tracking tools: Tools like Dependabot or Renovate can monitor your project’s dependencies and
automatically create pull requests with updates.

J
Use identification and monitoring tools: Security tools like Black Duck SCA can scan your codebase for
vulnerabilities in open source components and alert you when updates with security fixes are available.)

There's only one viable solution to stay aware of the open source you use. You need an accurate, comprehensive
inventory of open source, as well as automated processes to monitor vulnerabilities, upgrades, and the overall health of
the open source in your software.

2025 Open Source Security and Risk Analysis report | 26

Conclusion: The More Things Change

-
“Risk comes from not knowing what youre doing.”

—Warren Buffet and Charles Munger
- J

For the past 10 years, a continuing theme of Black Duck’s “Open Source Security and Risk Analysis” report has been
“Do you know what's in your code?” The numbers have changed since 2015—in most instances, they have significantly
increased—but the question remains the same.

Whatever end of the software supply chain you reside on— Cuirements While this represents Ihe classic \
example, open source enters in other w | Avarace

whether you're at the top or bottom of the funnel, whether =2 el Cammeree comporenis picaly tHs GO cS

)) ! . clude open source that may or may not be dis- x : . '__ Pa “7H' ;

your organization develops or uses software from different Clomer (il auistiee o pun) " o
eams are hig y motivated lo use apen source ih TevariEal :

vendors, whether that software is on-premises, in the cloud, e ey . e

. . " . built into reusable companents that are used internally,

embedded, or on a mobile device—it's a near-certainty that e ’ ’ S
Our review found that open source comprises over 36% of the average commercial application,

your SOﬁ:Wa re COﬂtaIﬂS OpEﬂ source COde DO you kl’]OW and represents over 100 unigue cpen saurce camponants in each application. When consider-

ing these numbers, itis Important to remember that we are reviewing commercial applications
as opposed to code developed for internal use. In the latter category, we expect to see open

exaCtly What those OSS Components are and Whether they source comprising a much higher percentage of the application {75%+ is not unusual), though
. . . . ith a smaller total number of components.
pose security, code quality, or license risks? me " '

I the number of uniqua components is surprising to a reader, il is also surprising to our cus-
tormers. Those wha provide a listing of the components (bill of material) they expect to be in the
applications when the audit begins-are often only aware of 45% of the actual compenents used.

KNOWN TO THE WORLD AT LARGE

Without visibility into the open saurce they use, a company is

Wheﬂ 97% Of COde COnta'nS Open SOUI’Ce, V|S|b|||ty II’]'[O yOUF In other'words, while customers may believe they are using lon average] 60-70 companents,
.) they are actually using over 140,
code needs to be a priority. When 91% of codebases are
))] IF YOU'RE USING OPEN SOURCE,
using open source far behind the current version, everyone (o) CHANCES ARE YOU ARE LIKELY
needs to do better in keeping their code up-to-date, especially Q) ECLUDINGYVULNERABILITIES
OF-applcations

when it comes to popular open source components.

+ 0SS is overwhelmingly present in modern software: Figure 8: Detail from the 2015 OSSRA Report
Ninety-seven percent of the commercial codebases we
evaluated contained open source, with some industry
codebases reaching 100%. Is your company in one of those high-risk sectors?

* You can't manage open source manually: The number of open source files in the average application has tripled in
the last four years. Transitive dependencies are a major factor in code complexity. Sixty-four percent of open source
components identified in our scans were transitive dependencies.

+ Security vulnerabilities are a pervasive risk: The majority (81%) of assessed codebases had high- or critical-risk
vulnerabilities. Many of these vulnerabilities stem from outdated open source components.

« Many of those vulnerabilities also stem from specific coding weaknesses: Seventy-one percent of the overall open
source vulnerabilities we found were linked to improper input validation.

+ Software Bills of Materials are essential for visibility into your code: SBOMs are critical for managing risk,
vulnerabilities, license compliance, software quality, and M&A due diligence.

+ Licensing risks are a common issue: More than half of audited codebases (56%) contained license conflicts, often
due to incompatible transitive dependencies. Thirty-three percent of all codebases had 0SS components with no
license or a customized license.

+ Outdated components present a major challenge: Most audited codebases (91%) contain outdated components,
with 90% of the codebases containing components more than 10 versions behind the most current version.

2025 Open Source Security and Risk Analysis report | 27

Key Recommendations

[Implement SCA: Use SCA tools to generate SBOMs, identify vulnerabilities, and manage A

L license compliance.)

6 Prioritize risk management: Focus on high-risk vulnerabilities and license issues that can A

L impact the most important aspects of your business.)

4 : : - A
Regularly update OSS: Stay up-to-date with security advisories, and promptly patch

L vulnerable software, particularly jQuery and other popular libraries.)

4 . . . : . o A
Establish secure coding practices: Focus on input validation, sanitization, and regular

L security testing of third-party code.)

(. . i
Monitor 0SS maintenance: Stay aware of updates to open source components by tracking

L project websites, using package managers, and utilizing automated security services.)

4 : : .
Create an SBOM: Develop a detailed SBOM that lists all open source components in your

L code, including licenses, versions, and provenance.)

[Integrate OSS management into your SDLC: Incorporate open source management into your
secure software development framework, following best practices such as those outlined by

(- CISA and NIST.)

[If you're planning an M&A, utilize Black Duck audits to vet your acquisitions: You need D
a trusted third party with access to the target's source code and the tools and expertise to

(- provide the necessary insights in these high-risk situations. D

As we wrote at the beginning of this report, while open source software offers numerous benefits, it also introduces
significant risks that must be actively managed. Organizations need comprehensive visibility into their software supply
chains, robust security practices, and a proactive approach to licensing and maintenance to avoid potential issues.
Implementing SCA tools, SBOMs, and proper hygiene practices is not optional—it's a necessity in today's software
landscape. By adopting our recommendations, organizations can mitigate risks and continue to leverage the benefits of
open source software safely and effectively.

You need to know without question what'’s in your code.

2025 Open Source Security and Risk Analysis report | 28

Contributors

The 2025 "Open Source Security and Risk Analysis” report was produced by Black Duck, with contributions from our
Audit, CyRC, Professional Services, and Marketing teams.

Special thanks to Nancy Bernstein, Conor Brolly, Kevin Collins, Scott Handy, Clement Pang, Merin McDonell, Mike
McGuire, Phil Odence, Liz Samet, Mark Van Elderen, and Jack Taylor.

Fred Bals scripsit hoc

About Black Duck

Black Duck® offers the most comprehensive, powerful, and trusted portfolio of
application security solutions in the industry. We have an unmatched track record
of helping organizations around the world secure their software quickly, integrate
security efficiently in their development environments, and safely innovate with
new technologies. As the recognized leaders, experts, and innovators in software
security, Black Duck has everything you need to build trust in your software. Learn
more at www.blackduck.com.

©2025 Black Duck Software, Inc. All rights reserved. Black Duck is a trademark of Black Duck Software, Inc. in the United States and other countries. All other names
mentioned herein are trademarks or registered trademarks of their respective owners. February 2025

2025 Open Source Security and Risk Analysis report | 29

	Welcome to the 2025 OSSRA Report
	Who Should Read This Report
	What You’ll Learn and Why It Matters
	About This Report’s Data and Black Duck Audits

	Our Findings at a Glance
	Looking at Open Source Risk and Vulnerabilities
	Software Security Begins with Visibility into Your Code
	Understanding Risk Management and Gaining
Visibility into Your Code
	Enhancing Software Security and Transparency with SCA and SBOMs
	Analyzing the Impact of a Vulnerability
	Log4j and Equifax: Two Lessons on the Need for Visibility into Your Code
	The Top High- and Critical-Risk Vulnerabilities
	What the Data Tells Us
	Industry-Specific Insights

	Open Source Licensing
	How Conflicts, Variants, and Lack of Licenses
Create Risk
	The Impact of Transitive Dependencies on License Conflicts
	The Top 10 Open Source Licenses of 2024
	What Are Permissive, Weak Copyleft, and Reciprocal Open Source Licenses?
	How to Manage Open Source License Risk with SCA
	Industry Perspectives on License Conflicts
	If You Anticipate an M&A

	Maintenance and Operational Factors Impacting Risk
	Conclusion: The More Things Change
	Key Recommendations

