

MALWARE ANALYSIS CHEAT SHEET

The analysis and reversing tips behind this
reference are covered in the SANS Institute
course FOR610: Reverse-Engineering Malware.

Overview of the Malware Analysis Process
1. Use automated analysis sandbox tools for an initial

assessment of the suspicious file.
2. Set up a controlled, isolated laboratory in which to

examine the malware specimen.

3. Examine static properties and meta-data of the
specimen for triage and early theories.

4. Perform behavioral analysis to examine the
specimen’s interactions with its environment.

5. Perform static code analysis to further understand the
specimen’s inner-workings.

6. Perform dynamic code analysis to understand the
more difficult aspects of the code.

7. If necessary, unpack the specimen.
8. Perform memory forensics of the infected lab system

to supplement the other findings.
9. Repeat steps 4-8 above as necessary (the order may

vary) until analysis objectives are met.
10. Document findings, save analysis artifacts and clean-

up the laboratory for future analysis.

Behavioral Analysis
Be ready to revert to good state via virtualization
snapshots, Clonezilla, dd, FOG, PXE booting, etc.
Monitor local interactions (Process Explorer, Process
Monitor, ProcDOT, Noriben).

Detect major local changes (RegShot, Autoruns).

Monitor network interactions (Wireshark, Fiddler).
Redirect network traffic (fakedns, FakeNet-NG).

Activate services (INetSim or actual services) requested by
malware and reinfect the system.
Adjust the runtime environment for the specimen as it
requests additional local or network resources.

IDA Pro for Static Code Analysis
Text search Alt+t

Show the operand as a character r

Insert repeatable comment ;

Follow jump or call in view Enter

Return to previous view Esc

Go to next view Ctrl+Enter

Toggle between text and graph views Spacebar

Display a diagram of function calls Ctrl+F12

List program’s entry point(s) Ctrl+e

Go to specific address g

Rename a variable or function n

Show cross-references to
selected function

Select function name
» x

x64dbg/x32dbg for Dynamic Code Analysis
Run the code F9

Step into/over instruction F7 / F8

Execute until selected instruction F4

Execute until the next return Ctrl+F9

Show previous/next executed instruction - / +

Return to previous view *

Go to specific expression Ctrl+g

Insert comment / label ; / :

Show current function as a graph g

Find specific pattern Ctrl+b

Set software breakpoint
on specific instruction

Select instruction
» F2

Set software breakpoint
on API

Go to Command prompt
» SetBPX API Name

Highlight all occurrences of the
keyword in disassembler

h » Click on
keyword

Assemble instruction in
place of selected one

Select instruction
» Spacebar

Edit data in memory or
instruction opcode

Select data or
instruction » Ctrl+e

Extract API call
references

Right-click in disassembler
» Search for » Current

module » Intermodular calls

Unpacking Malicious Code
Determine whether the specimen is packed by using
Detect It Easy, Exeinfo PE, Bytehist, peframe, etc.
To try unpacking the specimen quickly, infect the lab
system and dump from memory using Scylla.

For more precision, find the Original Entry Point (OEP) in a
debugger and dump with OllyDumpEx.

To find the OEP, anticipate the condition close to the end
of the unpacker and set the breakpoint.

Try setting a memory breakpoint on the stack in the
unpacker’s beginning to catch it during cleanup.

To get closer to the OEP, set breakpoints on APIs such as
LoadLibrary, VirtualAlloc, etc.

To intercept process injection set breakpoints on
VirtualAllocEx, WriteProcessMemory, etc.

If cannot dump cleanly, examine the packed specimen via
dynamic code analysis while it runs.
Rebuild imports and other aspects of the dumped file using
Scylla, Imports Fixer, UIF, pe_unmapper.

Bypassing Other Analysis Defenses
Decode obfuscated strings statically using FLARE, xorsearch,
Balbuzard, etc.
Decode data in a debugger by setting a breakpoint after the
decoding function and examining results.

Conceal x64dbg/x32dbg via the ScyllaHide plugin.

To disable anti-analysis functionality, locate and patch the
defensive code using a debugger.

Look out for tricky jumps via TLS, SEH, RET, CALL, etc. when
stepping through the code in a debugger.

If analyzing shellcode, use scdbg and jmp2it.

Disable ASLR via setdllcharacteristics, CFF Explorer.

Authored by Lenny Zeltser, who leads product management at Minerva and teaches at SANS Institute. You can find him at twitter.com/lennyzeltser and zeltser.com.
Download this and other Lenny’s security cheat sheets from zeltser.com/cheat-sheets. Creative Commons v3 “Attribution” License for this cheat sheet version 2.0.

https://sans.org/for610
https://zeltser.com/automated-malware-analysis/
https://zeltser.com/build-malware-analysis-toolkit/
https://digital-forensics.sans.org/media/Poster_Memory_Forensics.pdf
https://zeltser.com/malware-analysis-report/
http://clonezilla.org/
https://serverfault.com/questions/4906/using-dd-for-disk-cloning
https://fogproject.org/
https://en.wikipedia.org/wiki/Preboot_Execution_Environment
https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer
https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
http://www.procdot.com/
https://github.com/Rurik/Noriben
https://sourceforge.net/projects/regshot/
https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns
https://www.wireshark.org/
http://www.telerik.com/fiddler
https://code.activestate.com/recipes/491264-mini-fake-dns-server/
https://github.com/fireeye/flare-fakenet-ng
http://www.inetsim.org/
https://www.hex-rays.com/products/ida/
http://www.ollydbg.de/
http://ntinfo.biz/
http://www.exeinfo.xn.pl/
https://cert.at/downloads/software/bytehist_en.html
https://github.com/guelfoweb/peframe
http://forum.tuts4you.com/files/file/576-scylla-imports-reconstruction/
https://low-priority.appspot.com/ollydumpex/
http://tuts4you.com/download.php?view.2969
https://forum.tuts4you.com/topic/36688-wannabe-universal-import-fixer-wannabeuif/
https://github.com/hasherezade/malware_analysis/tree/master/pe_unmapper
https://github.com/fireeye/flare-floss
https://blog.didierstevens.com/programs/xorsearch/
https://www.decalage.info/python/balbuzard
https://digital-forensics.sans.org/blog/2013/05/14/tools-for-examining-xor-obfuscation-for-malware-analysis
https://x64dbg.com/
https://github.com/x64dbg/ScyllaHide
http://sandsprite.com/blogs/index.php?uid=7&pid=152
https://github.com/adamkramer/jmp2it/
http://blog.didierstevens.com/2010/10/17/setdllcharacteristics/
http://www.ntcore.com/exsuite.php
http://www.zeltser.com/
https://twitter.com/lennyzeltser
https://zeltser.com/
https://zeltser.com/cheat-sheets
http://creativecommons.org/licenses/by/3.0/

	MAlware Analysis Cheat Sheet
	Overview of the Malware Analysis Process
	Behavioral Analysis
	IDA Pro for Static Code Analysis
	x64dbg/x32dbg for Dynamic Code Analysis
	Unpacking Malicious Code
	Bypassing Other Analysis Defenses

