TCP/IP Cheat Sheet

A Free Study Guide by Boson Software, LLC

Table 1					
Class	Number of Subnets	Number of Hosts per Subnet	Range of Network IDs (First Octet)		
Class A	126	$16,777,214$	$1-126$		
Class B	16,384	65,534	$128-191$		
Class C	$2,097,152$	254	$192-223$		

The First-Octet Rule: High-Order Bits Determine the Address Class

An octet is a binary number of 8 bits, with the lowest possible number being 00000000 and the highest possible number being 11111111, or 2^{8}. The binary number 11111111, or 2^{8}, converts to 255 in decimal format.

The decimal number in the first octet, or the high-order bits, represents the network ID for the address, and that network ID remains the same for all hosts on that network segment. High-order bits, which are also called the most significant bits, are those in the left-most portion of the binary address. The remaining octets act as host IDs. Address classes are categorized based on the decimal number in the first octet, as seen in Table 1, the Address Class Summary table.

Class	Binary Start	Binary End	First Octet	Most Significant Bits	Special Note
Class A	00000001	01111111	1-126	0	Assignable
Class B	10000000	10111111	128-191	10	Assignable
Class C	11000000	11011111	192-223	110	Assignable
Class D	11100000	11101111	224-239	1110	Multicast
Class E	11110000	11110111	240-255	11110	InterNIC

Table 3

Class	Total Number of Subnets Per Class	Equation	Subnets
Class A	$\underline{\mathbf{0 1 1 1 1 1 1 1 1} .00000000 .00000000 .00000000}$	$2^{7}-2=126$	Net.H.H.H
Class B	$\mathbf{1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0}$	$2^{14}-2=16,384$	Net.Net.H.H
Class C	$\mathbf{1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 1 1 1 1 . 0 0 0 0 0 0 0 0}$	$2^{21}-2=2,097,152$	Net.Net.Net.H

Table 4
Class
Class A
Class B
Class C
00000000.11111111 .11111111 .11111111
$2^{24}-2=16,777,214$
Per Subnet

Reserved Address Space *RFC 1166 \& 1918 = Private Address Space (Internal Use Only)		
Netblock	Special Use	Reference
10.x.x.x	Private	RFC 1918
127.x.x.x	Loopback	Diagnostics
172.(16-31).x.x	Private	RFC 1918
192.0.0.x	Reserved	JBP
192.0.1.x	Backbone - Test - C	RH6
192.0.2.x	Internet - Test - C	JBP
192.0.(3-255).x	Unassigned	NIC
192.1.(0-1). x	Backbone Local Nets	SGC
192.1.3. x	Backbone Apollo Nets	SGC
192.168.x. X	Private	RFC 1918

Converting Decimal Into Binary

1. Create a chart with eight columns.
2. In the first row, enter $\mathbf{1}$ in the far right column. Moving to the left, double the preceding value to enter $\mathbf{2}$ in the next column, 4 in the next column, 8 in the next column, etc.
3. Continue in that manner until all columns in the first row contain a value. The column on the far left should contain the value $\mathbf{1 2 8}$. These values are called weighted values.
4. Beginning with the left-most weighted value, subtract each weighted value from the decimal being converted to binary until you reach the largest weighted value that can be subtracted without yielding a negative result. Enter a $\mathbf{1}$ as the binary value for that weighted value, and enter a $\mathbf{0}$ as the binary values for the weighted values that yielded negative results.
5. After reaching the largest weighted value that can be subtracted from the decimal without yielding a negative result, subtract the next weighted value from the remainder of the previous weighted value, not from the decimal. If a subsequent weighted value yields a negative result, enter a $\mathbf{0}$ as the binary value and subtract the next weighted value from the remainder yielded by the last successful subtraction (Note: See Weighted Values 2 and 1 in Table 6 below for an example).
6. Table 6 below illustrates the conversion of the decimal 29 into binary:

	Most Significant Bit		32	16	8	4	Least Significant Bit	
Weighted	128	64					2	1
Values								
Subtraction from Decimal	$29-128=-99$	$29-64=-35$	$29-32=-3$	$29-16=13$	$13-8=5$	$5-4=1$	$1-2=-1$	$1-1=0$
Binary	0	0	0	1	1	1	0	1

7. The decimal 29 converts into binary as 00011101.

Converting Binary Into Decimal

1. Create a chart with eight columns.
2. In the first row, enter 1 in the far right column. Moving to the left, double the preceding value to enter $\mathbf{2}$ in the next column, 4 in the next column, 8 in the next column, etc.
3. Continue in that manner until all columns in the first row contain a value. The column on the far left should contain the value $\mathbf{1 2 8}$. These values are called weighted values.
4. Enter the binary value in the chart below the weighted values so that there is one $\mathbf{0}$ or one $\mathbf{1}$ below each weighted value.
5. Add together all weighted values that have 1 s below them.
6. Table 7 below illustrates the conversion of the binary 11000011 into decimal:
Table 7

Most Significant Bit								
Weighted Values	$\mathbf{1 2 8}$	$\mathbf{6 4}$	32	16	8	4	$\mathbf{2}$	$\mathbf{1}$
Binary	1	1	0	0	0	0	1	1

7. The binary 11000011 converts into the decimal $195(128+64+2+1=195)$.

Subnetting

Subnetting allows a large network block to be logically subdivided into multiple smaller networks, or subnets. The use of multiple smaller networks allows the use of varying physical networks, such as Ethernet or Token Ring, which could not otherwise be combined. Additionally, the smaller subnets can improve the speed of traffic and permit easier management.

Subnet masks provide the logical segmentation required by routers to be able to address logical subnets. A default gateway IP address on a router interface allows clients to access networks outside their local subnets. The number of bits used in a subnet mask determines the number of subnets available.

Things to Remember

- Subnet masks cannot contain all Os or all 1s in either the host portion or the network portion of the address.
- Subnet Zero, which contains all $0 s$, can be used sometimes. It is not recommended.
- All 1 s Subnet, which contains all 1 s , can never be used.
- The incremental value is the IP host address starting point for the subnet.
- Each incremental value represents another logical subnet.
- Routers only use the network ID and the subnet broadcast.
- Clients only use the IP address on the clients' local subnets and the clients' subnet broadcasts.
- Each bit represents a power of 2 .
Table 8

Binary Mask	Decimal Mask	Binary Hosts	Bits Used	Number of Subnets	Valid Host Increments
00000000	0	00000000	0	Net ID	Not a subnet
10000000	128^{*}	00000001	1	1	128^{*}
11000000	192	00000011	2	2	64
11100000	224	00000111	00001111	3	6
11110000	240	248	00011111	5	14
11111000	252	00111111	6	30	16
11111100	254^{*}	01111111	7111111	8	62
11111110			254	8	
1111111				26	2^{*}

[^0]
Logical Addressing

All subnets can be categorized into seven ranges with three classes each (Class A, Class B, and Class C).

Class A						
Maximum Number of Subnets	Calculation for Host ID	Maximum Number of Hosts per Subnet	Subnet Mask	Subnet Bits Required	Host Bits Available	Range
0	$2^{24}-2$	16,777,214	255.0.0.0	0	24	Begin Class A
1	$2^{23}-2$	Invalid	128 = Subnet 0	1	23	Not Recommended
2	$2^{22}-2$	4,194,302	255.192.0.0	2	22	Range 1/7
6	$2^{21}-2$	2,097,150	255.224.0.0	3	21	Range 2/7
14	$2^{20}-2$	1,048,574	255.240.0.0	4	20	Range 3/7
30	$2^{19}-2$	524,286	255.248.0.0	5	19	Range 4/7
62	$2^{18}-2$	262,142	255.252.0.0	6	18	Range 5/7
126	$2^{17}-2$	131,070	255.254.0.0	7	17	Range 6/7

Class B						
Maximum Number of Subnets	Calculation for Host ID	Maximum Number of Hosts per Subnet	Subnet Mask	Subnet Bits Required	Host Bits Available	Range
0	$2^{16}-2$	65,534	255.0.0.0	8	16	Class A Range 7/7 \& Begin Class B
1	$2^{15}-2$	Invalid	128 = Subnet 0	9	15	Not Recommended
2	$2^{14}-2$	16,382	255.255.192.0	10	14	Range 1/7
6	$2^{13}-2$	8,190	255.255.224.0	11	13	Range 2/7
14	$2^{12}-2$	4,094	255.255.240.0	12	12	Range 3/7
30	$2^{11}-2$	2,046	255.255.240.0	13	11	Range 4/7
62	$2^{10}-2$	1,022	255.255.254.0	14	10	Range 5/7
126	$2^{9}-2$	510	255.255.254.0	15	9	Range 6/7

Table 11 Class C						
Maximum Number of Subnets	Calculation for Host ID	Maximum Number of Hosts per Subnet	Subnet Mask	Subnet Bits Required	Host Bits Available	Range
0	$2^{8}-2$	254	255.255 .255 .0	16	8	 Begin Class C
1	$2^{7}-2$	Invalid	$128=$ Subnet 0	17	7	Not Recommended
2	$2^{6}-2$	62	255.255 .255 .192	18	6	Range $1 / 5$
6	$2^{5}-2$	30	255.255 .255 .224	19	5	Range 2/5
14	$2^{4}-2$	14	255.255 .255 .240	20	4	Range 3/5
30	$2^{3}-2$	6	255.255 .255 .248	21	3	Range 4/5
62	$2^{2}-2$	2	255.255 .255 .252	22	2	Range 5/5

Things to Remember

- The octets that contain only 1 s or only 0 s do not need additional calculation.
- If there are only 1 s , the decimal value is 255 ; if there are only 0 s, the decimal value is 0 .
- Calculation is only required for the octet that has been broken at the bit boundary.

Class C Example Breakdown				
Subnet	Octet	Range	Incremental Value	Description
Network (Subnet 0 Do not use)	00/000000	0	64	Net ID (goes in routing table)
	00/000001	1		first host ID in Subnet 0
	00/111110	62		last host ID in Subnet 0
	00/111111	63		broadcast for only Subnet 0
Subnet 1 of 4	01/000000	64	64	Net ID (goes in routing table)
	01/000001	65		first host ID for Subnet 1
	01/111110	126		last host ID for Subnet 1
	01/111111	127		broadcast for only Subnet 1
Subnet 2 of 4	10/000000	128	64	Net ID (goes in routing table)
	10/000001	129		first host ID for Subnet 2
	10/111110	190		last host ID for Subnet 2
	10/111111	191		broadcast for only Subnet 2
Broadcast Subnet (Do not use)	11/000000	192	64	Net ID (goes in routing table)
	11/000001	193		first host ID in All 1s subnet
	11/111110	254		last host ID in All 1s subnet
	11/111111	255		Local wire (all subnets) broadcast
Network (Subnet 0 Do not use)	000/00000	0	32	Net ID (goes in routing table)
	000/00001	1		first host ID in Subnet 0
	000/11110	30		last host ID in Subnet 0
	000/11111	31		broadcast for only Subnet 0
Subnet 1 of 8	001/00000	32		Net ID (goes in routing table)
	001/00001	33		first host ID for Subnet 1
	001/11110	62		last host ID for Subnet 1
	001/11111	63		broadcast for only Subnet 1
Subnet 2 of 8	010/00000	64	32	Net ID (goes in routing table)
	010/00001	65		first host ID for Subnet 2
	010/11110	94		last host ID for Subnet 2
	010/11111	95		broadcast for only Subnet 2
Subnet 3 of 8	011/00000	96	32	Net ID (goes in routing table)
	011/00001	97		first host ID for Subnet 3
	011/11110	126		last host ID for Subnet 3
	011/11111	127		broadcast for only Subnet 3
Subnet 4 of 8	100/00000	128	32	Net ID (goes in routing table)
	100/00001	129		first host ID for Subnet 4
	100/11110	158		last host ID for Subnet 4
	100/11111	159		broadcast for only Subnet 4
Subnet 5 of 8	101/00000	160	32	Net ID (goes in routing table)
	101/00001	161		first host ID for Subnet 5
	101/11110	190		last host ID for Subnet 5
	101/11111	191		broadcast for only Subnet 5

Subnet 6 of 8	$110 / 00000$	192	32	Net ID (goes in routing table)
	$110 / 00001$	193		first host ID for Subnet 6
	$110 / 11110$	222		last host ID for Subnet 6
	$110 / 11111$	223	32	broadcast for only Subnet 6
Broadcast Subnet (Do not use)	$111 / 00000$	224		
	$110 / 00001$	225		first host ID in All 1s subnet
	$110 / 11110$	254	last host ID in All 1s subnet	
	$111 / 11111$	255		local wire (all subnets) broadcast

Power of 2 Shortcuts for Calculating Subnets

Networks Gained from Using Host Bits

Where n is equal to the number of host bits used for subnets, $2^{n}-2=$ the total number of networks gained.

Hosts Available after Subnetting

Where h is equal to the number of host bits remaining after subnetting, $2^{h}-2=$ the total number of hosts available.

Example

You need to subnet the Class C network address 193.5.15.0 to obtain 5 additional networks, and you need to find out how many hosts will be available after subnetting.

There are 8 host bits for a Class C address. Beginning with 1 host bit, calculate the number of networks that would be gained until you find a number of host bits that yields at least five networks.

1 host bit: $2^{1}-2=1$ network
2 host bits: $2^{2}-2=2$ networks
3 host bits: $2^{3}-3=6$ networks

From the calculations, you can see that 2 host bits will only yield 2 networks; you would not obtain the 5 networks that you need. However, 3 host bits will yield 6 networks, which will provide the 5 networks that you need.

Of the 8 host bits for a Class C address, you have allocated 3 of those for subnetting, thus leaving 5 host bits available for their original purpose. As a result, $2^{5}-2$, or 30 , hosts can be supported on each subnet.

Class A
(24 bits available for subnetting)

Table 13	Subnets $\left(2^{n}-2\right)$	Hosts Per Subnet $\left(2^{h}-2\right)$	Slash Notation	Mask	Subnet Slice
Bits Required (n)	$2^{1}-2=0$	$2^{23}-2=8,388,606$	$/ 9$	255.128 .0 .0	Subnet 0
1	$2^{2}-2=2$	$2^{22}-2=4,194,302$	$/ 10$	255.192 .0 .0	Subnet $1 / 7$
2	$2^{3}-2=6$	$2^{21}-2=2,097,150$	$/ 11$	255.224 .0 .0	Subnet $2 / 7$
3	$2^{4}-2=14$	$2^{20}-2=1,048,574$	$/ 12$	255.240 .0 .0	Subnet $3 / 7$
4	$2^{5}-2=30$	$2^{19}-2=524,286$	$/ 13$	255.248 .0 .0	Subnet $4 / 7$
5	$2^{6}-2=62$	$2^{18}-2=262,142$	$/ 14$	255.252 .0 .0	Subnet $5 / 7$
6	$2^{7}-2=126$	$2^{17}-2=131,070$	$/ 15$	255.254 .0 .0	Subnet $6 / 7$
7^{*}	$2^{8}-2=254$	$2^{16}-2=65,534$	$/ 16$	255.255 .0 .0	Subnet $7 / 7$
8^{*}					

* $=7$ subnets valid for Class A

Class B
(16 bits available for subnetting)

Table 14					
Bits Required (n)	Subnets $\left(2^{n}-2\right)$	Hosts Per Subnet $\left(2^{h}-2\right)$	Slash Notation	Mask	Subnet Slice
1	$2^{1}-2=0$	$2^{15}-2=32,766$	$/ 17$	255.255 .128 .0	Subnet 0
2	$2^{2}-2=2$	$2^{14}-2=16,382$	$/ 18$	255.255 .192 .0	Subnet $1 / 7$
3	$2^{3}-2=6$	$2^{13}-2=8,190$	$/ 19$	255.255 .224 .0	Subnet $2 / 7$
4	$2^{4}-2=14$	$2^{12}-2=4,094$	$/ 20$	255.255 .240 .0	Subnet $3 / 7$
5	$2^{5}-2=30$	$2^{11}-2=2,046$	$/ 21$	255.255 .248 .0	Subnet $4 / 7$
6	$2^{6}-2=62$	$2^{10}-2=1,022$	$/ 22$	255.255 .252 .0	Subnet $5 / 7$
7^{*}	$2^{7}-2=126$	$2^{9}-2=510$	$/ 23$	255.255 .254 .0	Subnet $6 / 7$
8^{*}	$2^{8}-2=254$	$2^{8}-2=254$	$/ 24$	255.255 .255 .0	Subnet $7 / 7$

* $=7$ subnets valid for Class B

Class C
(8 bits available for subnetting)
Table 15

Bits Required (n)	Subnets $\left(2^{n}-2\right)$	Hosts Per Subnet $\left(2^{h}-2\right)$	Slash Notation	Mask	Subnet Slice
1	$2^{1}-2=0$	$2^{7}-2=126$	$/ 25$	255.255 .255 .128	Subnet 0
2	$2^{2}-2=2$	$2^{6}-2=62$	$/ 26$	255.255 .255 .192	Subnet $1 / 5$
3	$2^{3}-2=6$	$2^{5}-2=30$	$/ 27$	255.255 .255 .224	Subnet $2 / 5$
4	$2^{4}-2=14$	$2^{4}-2=14$	$/ 28$	255.255 .255 .240	Subnet $3 / 5$
5^{*}	$2^{5}-2=30$	$2^{3}-2=6$	$/ 29$	255.255 .255 .248	Subnet $4 / 5$
6^{*}	$2^{6}-2=62$	$2^{2}-2=2$	$/ 30$	255.255 .255 .252	Subnet $5 / 5$

[^1]
Practice

You have the address 132.7.0.0. You need 5 subnets of equal size with 1,500 hosts each. Find the following information in the given order:

1. the number of host bits to obtain for the required number of subnets
2. the numbers of hosts available per subnet after subnetting
3. the decimal value of the new subnet mask
4. the incremental value of the subnets
5. the first host, broadcast, and last host of each subnet
6. Using powers of 2 , determine the number of host bits to obtain for 5 subnets.

- The first octet is 132 , which is within the Class B range (128-191). Recall that each octet has 8 bits.
- The first two octets in a Class B address may not be used for subnetting, so there are two octets, or 16 bits, available.
- Beginning at the left side of the available bits and moving toward the right, remove one bit at a time from the host portion of the binary and calculate the number of networks gained with each bit.
$2^{1}-2=0$ (You will never use just 1 bit.)
$2^{2}-2=2$ (Not enough networks; keep trying.)
$2^{3}-2=6$ (3 bits will provide the 5 subnets and leave 1 available for future expansion.)
- Enter those 3 bits into a weighted values chart, as shown in Table 16 below.

	Most Significant Bit					Least Significant Bit			Hosts
Weighted Values	128	64	32	16	8	4	2	1	
Binary	1	1	1	0	0	0	0	0	

2. Using powers of 2, determine how many hosts will be available after subnetting.

- Recall that there are 16 host bits available for a Class B address. You will use 3 of those for subnetting, thus leaving 13 host bits available to use for hosts.
$2^{13}-2=8,190$ hosts available per subnet
*If you prefer to have extra subnets available for future expansion over having extra host capacity, you can use additional host bits now.

3. Using the weighted values chart created in step 1, determine the new decimal value of the subnet mask.

- Add together each weighted value with a 1 below it.
$128+64+32=224$
- Since this is a Class B address and the first two octets are reserved, the default subnet mask is 255.255.0.0.
- The 3 host bits were removed from the third octet, so the new decimal mask is 255.255.224.0, or /19 in slash notation (8 bits +8 bits +3 bits $=19$).

4. Using the decimal mask or the last subnet bit's weighted value, determine the incremental value of the subnets.

- Subtract the decimal value calculated in step 3 from 256 to obtain the incremental value.
$256-224=32$
OR
- Look at Table 16 from step 1, and find the last weighted value toward the right with a 1 below it. That value, 32 , is the incremental value.

5. Use the incremental value to find the first host IP, broadcast, and last host IP for each subnet

- Begin with the incremental value, which is 32 in this scenario, and add 1 to obtain the first host IP for subnet 1.
$32+1=33$ (first host IP for subnet 1)
- Add the current subnet's incremental value with the incremental value and subtract 1 to obtain the broadcast for subnet 1.
$32+32-1=63$
- Subtract 1 from the subnet 1 's broadcast to obtain the last host IP for subnet 1.
$63-1=62$
- Repeat this process for each subsequent subnet, as shown in Table 17 below.

Range	Subnet	Incremental Value (subnet ID used by routing table)	First Host IP	Broadcast	Last Host IP
0×32	0	0	Invalid		
1×32	1	32	33	63	62
2×32	2	64	65	95	94
3×32	3	96	97	127	126
4×32	4	128	129	159	158
5×32	5	160	161	191	190
6×32	6	192	193	223	222
7×32	7	224	Broadcast Reserved		

Notes

- You cannot use either All 0 s or All 1 s subnets, which reduces the available subnets by $2\left(2^{n} \mathbf{- 2}=\right.$ available subnets).
- The All Os address is the network ID for that subnet and will be used by a router in its routing table.
- The All 1 s address is the network broadcast for all subnets on that wire.

Printable Study Cards

Warning: no warranty expressed or implied. Use at your own risk.

Warning: no warranty expressed or implied. Use at your own risk. Copyright © 2010 Boson Software, LLC. All rights reserved.

[^0]: * = Seven subnets are valid for Class A or B in the first octet. Class C has five valid subnets; the last two subnets are each a binary of 1.

[^1]: * $=5$ valid subnets for Class C; last 2 are binary all 1

