PowerShell
RUNAS

Starting with PowerShell 4.0, we can specify that a script
requires administrative privileges by including a #Requires
statement with the -RunAsAdministrator switch
parameter.#Requires -RunAsAdministrator

Run a script on a remote computer
-- invoke-command -computername machinel, machine2 -
filepath c:\Script\script.ps1

Remotely shut down another machine after one minute
-- Start-Sleep 60; Restart-Computer —Force —
ComputerName TARGETMACHINE

Install an MSI package on a remote computer

-- (Get-WMIObject -ComputerName TARGETMACHINE
-List | Where-Object -FilterScript {$.Name -eq
"Win32_Product"}).Instal\MACHINEWHEREMSIRESI
DES\path\package.msi)

Upgrade an installed application with an MSI-based
application upgrade package

-- (Get-WmiObject -Class Win32 Product -ComputerName
. -Filter

"Name="name of app to be upgraded").Upgrade(\\MAC
HINEWHEREMSIRESIDES\path\upgrade package.mst)

Remove an MSI package from the current computer
-- (Get-WmiObject -Class Win32_Product -Filter
"Name="product to remove" -ComputerName .
).Uninstall()

Collecting information
Get information about the make and model of a

computer
-- Get-WmiObject -Class Win32_ComputerSystem

Get information about the BIOS of the current

computer
-- Get-WmiObject -Class Win32_ BIOS -ComputerName .

List installed hotfixes (QFEs, or Windows Update files)
-- Get-WmiObject -Class Win32_QuickFixEngineering -
ComputerName .

Get the username of the person currently logged on to a
computer

-- Get-WmiObject -Class Win32_ComputerSystem -
Property UserName -ComputerName .

Find just the names of installed applications on the
current computer

-- Get-WmiObject -Class Win32_Product -ComputerName
. | Format-Wide -Column 1

Get IP addresses assigned to the current computer
-- Get-WmiObject -Class

Win32 NetworkAdapterConfiguration -Filter
IPEnabled=TRUE -ComputerName . | Format-Table -
Property IPAddress

Get a more detailed IP configuration report for the
current machine

-- Get-WmiObject -Class

Win32 NetworkAdapterConfiguration -Filter
IPEnabled=TRUE -ComputerName . | Select-Object -
Property [a-z]* -ExcludeProperty IPX* WINS*

To find network cards with DHCP enabled on the
current computer

-- Get-WmiObject -Class

Win32 NetworkAdapterConfiguration -Filter
"DHCPEnabled=true" -ComputerName .

Enable DHCP on all network adapters on the current
computer

-- Get-WmiObject -Class

Win32 NetworkAdapterConfiguration -Filter
IPEnabled=true -ComputerName . | ForEach-Object -
Process {$.EnableDHCP()}

Navigate the Windows Registry like the file system -- cd
hkcu:

Search recursively for a certain string within files -- dir
—1 | select string "searchforthis"

Find the five processes using the most memory -- ps |
sort —p ws | select —last 5

Cycle a service (stop, and then restart it) like DHCP --
Restart-Service DHCP

List all items within a folder -- Get-ChildItem — Force

Recurse over a series of directories or folders -- Get-
ChildItem —Force c:\directory —Recurse

Remove all files within a directory without being
prompted for each -- Remove-Item C:\tobedeleted —
Recurse

Restart the current computer -- (Get-WmiObject -Class
Win32 OperatingSystem -ComputerName
.).-Win32Shutdown(2)

&)

Set-ExecutionPolicy
Although you can create and execute PowerShell scripts,
Microsoft has disabled scripting by default in an effort to
prevent malicious code from executing in a PowerShell
environment. You can use the Set-ExecutionPolicy
command to control the level of security surrounding
PowerShell scripts. Four levels of security are available to
you:

e Restricted -- Restricted is the default execution policy
and locks PowerShell down so that commands can be
entered only interactively. PowerShell scripts are not
allowed to run.

e All Signed -- If the execution policy is set to All
Signed then scripts will be allowed to run, but only if
they are signed by a trusted publisher.

e Remote Signed -- If the execution policy is set to
Remote Signed, any PowerShell scripts that have been
locally created will be allowed to run. Scripts created
remotely are allowed to run only if they are signed by a
trusted publisher.

e Unrestricted -- As the name implies, Unrestricted
removes all restrictions from the execution policy.

You can set an execution policy by entering the Set-
ExecutionPolicy command followed by the name of the
policy. For example, if you wanted to allow scripts to run
in an unrestricted manner you could type:

Set-ExecutionPolicy Unrestricted

Get-ExecutionPolicy

If you're working on an unfamiliar server, you'll need to
know what execution policy is in use before you attempt to
run a script. You can find out by using the Get-
ExecutionPolicy command.

Get-Service

The Get-Service command provides a list of all of the
services that are installed on the system. If you are
interested in a specific service you can append the -Name
switch and the name of the service (wildcards are
permitted) When you do, Windows will show you the
service's state.

Export-CSV

Just as you can create an HTML report based on
PowerShell data, you can also export data from PowerShell
into a CSV file that you can open using Microsoft Excel.
The syntax is similar to that of converting a command's
output to HTML. At a minimum, you must provide an
output filename. For example, to export the list of system
services to a CSV file, you could use the following
command:

Get-Service | Export-CSV c:\service.csv

Select-Object

If you tried using the command above, you know that there
were numerous properties included in the CSV file. It's
often helpful to narrow things down by including only the
properties you are really interested in. This is where the
Select-Object command comes into play. The Select-Object
command allows you to specify specific properties for
inclusion. For example, to create a CSV file containing the

name of each system service and its status, you could use
the following command:

Get-Service | Select-Object Name, Status | Export-
CSV c:\service.csv

Get-Process

Just as you can use the Get-Service command to display a
list of all of the system services, you can use the Get-
Process command to display a list of all of the processes
that are currently running on the system.

Stop-Process

Sometimes, a process will freeze up. When this happens,
you can use the Get-Process command to get the name or
the process ID for the process that has stopped responding.
You can then terminate the process by using the Stop-
Process command. You can terminate a process based on
its name or on its process ID. For example, you could
terminate Notepad by using:

Stop-Process -Name notepad

Stop-Process -ID 2668

PowerShell Active Directory

Reset a User Password

Let's start with a typical IT pro task: resetting a user's
password. We can easily accomplish this by using the Set-
ADAccountPassword cmdlet. The tricky part is that the
new password must be specified as a secure string: a piece
of text that's encrypted and stored in memory for the
duration of your PowerShell session. So first, we'll create a
variable with the new password:

PS C:\> Snew=Read-Host "Enter the new password" -

AsSecureString
Next, we'll enter the new password:
PS C:\>

Now we can retrieve the account (using the
samAccountname is best) and provide the new password.
Here's the change for user Jack Frost:

PS C:\> Set-ADAccountPassword jfrost -NewPassword
Snew

Unfortunately, there's a bug with this cmdlet: -Passthru, -
Whatif, and -Confirm don't work. If you prefer a one-line
approach, try this:

PS C:\> Set-ADAccountPassword jfrost -NewPassword

(ConvertTo-SecureString -AsPlainText -String

"P@sswOrd1z3" -force)

Finally, I need Jack to change his password at his next
logon, so I'll modify the account by using Set-ADUser:

PS C:\> Set-ADUser jfrost -ChangePasswordAtLogon STrue

The command doesn't write to the pipeline or console
unless you use -True. But I can verify success by retrieving
the username via the Get-ADUser cmdlet and specifying
the PasswordExpired property, shown in Figure 2.

161

Disable and Enable a User Account
Next, let's disable an account. We'll continue to pick on
Jack Frost. This code takes advantage of the

-Whatif parameter, which you can find on many cmdlets
that change things, to verify my command without running
1t:

PS C:\> Disable-ADAccount jfrost -whatif

What if: Performing operation "Set" on Target "CN=Jack
Frost,

OU=staff,0U=Testing, DC=GLOBOMANTICS,DC=local".
Now to do the deed for real:

PS C:\> Disable-ADAccount jfrost

When the time comes to enable the account, can you guess
the cmdlet name?

PS C:\> Enable-ADAccount jfrost

These cmdlets can be used in a pipelined expression to
enable or disable as many accounts as you need. For
example, this code disables all user accounts in the Sales
department:

PS C:\> get-aduser -filter "department -eq 'sales'" |

disable-adaccount

Unlock a User Account

Now, Jack has locked himself out after trying to use his
new password. Rather than dig through the GUI to find his
account, I can unlock it by using this simple command:

PS C:\> Unlock-ADAccount jfrost

Delete a User Account

Deleting 1 or 100 user accounts is easy with the Remove-
ADUser cmdlet. I don't want to delete Jack Frost, but if
did, I could use this code:

PS C:\> Remove-ADUser jfrost -whatif

What if: Performing operation "Remove" on Target

"CN=Jack

Frost,OU=staff,0U=Testing, DC=GLOBOMANTICS,DC=local".

Or I could pipe in a bunch of users and delete
them with one simple command:
PS C:\> get-aduser -filter "enabled -eq 'false'"

-property WhenChanged -SearchBase "OU=Employees,
DC=Globomantics,DC=Local" | where {S_.WhenChanged
-le (Get-Date).AddDays(-180)} | Remove-ADuser -whatif
This one-line command would find and delete all disabled

accounts in the Employees organizational unit (OU) that
haven't been changed in at least 180 days.

Add Members to a Group

Let's add Jack Frost to the Chicago IT group:

PS C:\> add-adgroupmember "chicago IT" -Members jfrost
It's that simple. You can just as easily add hundreds of
users to a group, although doing so is a bit more awkward
than I would like:

PS C:\> Add-ADGroupMember "Chicago Employees" -
member

(get-aduser -filter "city -eq 'Chicago"")

I used a parenthetical pipelined expression to find all users
with a City property of Chicago. The code in the
parentheses is executed and the resulting objects are piped
to the -Member parameter. Each user object is then added
to the Chicago Employees group. It doesn't matter whether
there are 5 or 500 users; updating group membership takes
only a few seconds This expression could also be written
using ForEach-Object, which might be easier to follow.

PS C:\> Get-ADUser -filter "city -eq 'Chicago'" | foreach

{Add-ADGroupMember "Chicago Employees" -Member S_}

Enumerate Members of a Group
You might want to see who belongs to a given group. For
example, you should periodically find out who belongs to
the Domain Admins group:

PS C:\> Get-ADGroupMember "Domain Admins"

The cmdlet writes an AD object for each member to the
pipeline. But what about nested groups? My Chicago All
Users group is a collection of nested groups. To get a list of
all user accounts, all I need to do is use the -Recursive
parameter:

PS C:\> Get-ADGroupMember "Chicago All Users"

-Recursive | Select DistinguishedName

Disable a Computer Account

Perhaps when you find those inactive or obsolete accounts,
you'd like to disable them. Easy enough. We'll use the same
cmdlet that we use with user accounts. You can specify it
by using the account's samAccountname:

PS C:\> Disable-ADAccount -Identity "chi-srv01S" -whatif
What if: Performing operation "Set" on Target "CN=CHI-
SRVO01,

CN=Computers, DC=GLOBOMANTICS,DC=local".

Or you can use a pipelined expression:

PS C:\> get-adcomputer "chi-srv01" | Disable-ADAccount
I can also take my code to find obsolete accounts and
disable all those accounts:

PS C:\> get-adcomputer -filter "Passwordlastset

-It '1/1/2012'" -properties *| Disable-ADAccount

[

Find Computers by Type

The last task that I'm often asked about is finding computer
accounts by type, such as servers or laptops. This requires a
little creative thinking on your part. There's nothing in AD
that distinguishes a server from a client, other than the OS.
If you have a laptop or desktop running Windows Server
2008, you'll need to get extra creative.

You need to filter computer accounts based on the OS. It
might be helpful to get a list of those OSs first:

PS C:\> Get-ADComputer -Filter * -Properties
OperatingSystem |

Select OperatingSystem -unique | Sort OperatingSystem

I want to find all the computers that have a server OS:
PS C:\> Get-ADComputer -Filter "OperatingSystem -like
'*Server*'" -properties OperatingSystem,OperatingSystem

ServicePack | Select Name,Op* | format-list

As with the other AD Get cmdlets, you can fine-tune your
search parameters and limit your query to a specific OU if

necessary. All the expressions that I've shown you can be
integrated into larger PowerShell expressions. For example,
you can sort, group, filter, export to a comma-separated
value (CSV), or build and email an HTML report, all from
PowerShell and all without writing a single PowerShell
script! In fact, here's a bonus: a user password-age report,
saved as an HTML file:

PS C:\> Get-ADUser -Filter "Enabled -eq 'True' -AND

m

PasswordNeverExpires -eq 'False'" -Properties

PasswordLastSet,PasswordNeverExpires,PasswordExpired

/

Select
DistinguishedName,Name,pass* @{Name="PasswordAge"

Expression={(Get-Date)-S_.PasswordLastSet}} [sort
PasswordAge -Descending | ConvertTo-Html -Title

"Password Age Report" | Out-File c:\Work\pwage.htm

163

