
DATA STRUCTURES

CHEAT SHEET

Python - Data Structure

It is a way of organizing data that contains the items stored and their

relationship to each other

The areas in which Data Structures are applied:

• Compiler design

• Operating system

• Database Management System

• Statistical Analysis Package

• Numerical Analysis

• Graphics

• Artificial Intelligence

• Simulations

D a t a T y p e s

T y p e s o f D a t a S t r u c t u r e s

L i s t s a n d T u p l e s i n P y t h o n

FURTHERMORE:
Data Structures Certification Training Course

Data structures can be used in

the following areas:

• RDBMS: Array (Array of

structure)

• Network data model:

Graph

• Hierarchical Data model:

Trees

o We can use * to repeat the string for

a specific number of times. Eg: x*2

o String can be sliced, that is to select

parts of the string. Eg: Coke

z1 = x[2:]

print(z1)

Slicing

z2 = y[0] + y[1]

print(z2)

Output: ke

Co

o To capitalize the strings

Eg: str.capitalize('cookie')

o To retrieve the length of the strings

Eg:

str1 = "Cake 4 U"

str2 = "404"

len(str1)

o To replace parts of a string with

another string

o Eg: str1.replace('4 U',

str2)

• Boolean: It is a built-in data type that can take the values TRUE or FALSE

Primitive Data Structures:

• Integer: It is used to represent numeric data, more specifically whole numbers

from negative infinity to infinity. Eg: 4, 5, -1 etc

• Float: It stands for floating point number. Eg: 1.1,2.3,9.3 etc

• String: It is a collection of Alphabets, words or other characters. In python it

can be created by using a pair of single or double quotes for the sequence.

Eg: x = 'Cake’

y = '’Cookie’’

Certain operations can be performed on a string:

Non- Primitive Data Structures:

• Array: It is a compact way of collecting data types where all entries must be of the same

data type.

Syntax of writing an array in python:

import array as arr

a = arr.array("I",[3,6,9])

type(a)

• Linked list: List in Python is used to store collection of heterogeneous items. It is

described using the square brackets [] and hold elements separated by comma

Eg: x = [] # Empty list

type(x)

o The list can be classified into linear and non-linear data structures

o Linear data structures contain Stacks and queues

o Non-linear data structures contains Graphs and Trees

• Stack: It is a container of objects that can be inserted or removed according to LIFO(Last

In First Out) concept. pop() method is used during disposal in Python

Eg: stack.pop() # Bottom -> 1 -> 2 -> 3 -> 4 -> 5 (Top)

stack.pop() # Bottom -> 1 -> 2 -> 3 -> 4 (Top)

print(stack)

• Queue: It is a container of objects that can be inserted or removed according to

FIFO(First In First Out) concept.

• Graph: It is a data structure that consists of a finite set of vertices called nodes, and a

finite set of ordered pair (u,v) called edges. It can be classified as direction and weight

• Binary Tree: Tree is a hierarchical data structure. Here each node has at most two

children

• Binary Search Tree: It provides moderate access/ search and moderate insertion/

deletion

• Heap: It is a complete tree and is suitable to be stored in an array, It is either MIN or Max

• Hashing: Collection of items that are stored in a way that it becomes easy to find them is

hashing

• To specify size of tuple/list:

Synatx: len(myListOrTuple)

• Remove element in position X of list/tuple:

Syntax: Lists: del myList[x]

Tuples: tuples are immutable!

• Concatenate two lists/tuples:

Lists: myList1 + myList2

Tuples: myTuple1 + myTuple2

Concatenating a List and a Tuple will

produce a TypeError exception

• Insert element in position x of a list/tuple

Syntax: Lists: myList.insert(x,

"value")

Tuples: tuples are immutable!

• Append "x" to a list/tuple:

Syntax: Lists: myList.append("x")

Tuples: tuples are immutable!

• Convert a list/tuple to tuple/list:

Syntax: List to Tuple: tuple(myList)

Tuple to List: list(myTuple)

• To initialize empty list /tuple:

Syntax: Lists: myList = []

Tuples: myTuple = ()

• To get an element in position x in list/tuple:

Syntax: "x" in myListOrTuple

• Index of element ‘X’ of list/tuple

Syntax: myListOrTuple.index("x") -

- If not found, throws a ValueError

exception

• Number of occurance of X in list/tuple:

Syntax: myListOrTuple.count("x")

• Update an item of List/tuple:

Syntax: Lists: myList[x] = "x“

Tuples: tuples are immutable!

• Remove element in position X of list/tuple:

Syntax: Lists: del myList[x]

Tuples: tuples are immutable!

Ordered sequence of values indexed by integer numbers. Tuples are immutable

Algorithm Best case
Average

case
Worst case Remarks

Selection

sort
½ n 2 ½ n 2 ½ n 2

n exchanges,

quadratic is the best case

Insertion

sort
n ¼ n 2 ½ n 2

Used for small or partial-

sorted arrays

Bubble

sort
n ½ n 2 ½ n 2

Rarely useful,

Insertion sort can be used

instead

Shell sort n log3 n unknown c n 3/2
Tight code,

Sub quadratic

Merge

sort
½ n lg n n lg n n lg n

n log n guarantee;

stable

Quick sort n lg n 2 n ln n ½ n 2

n log n probabilistic

guarantee;

fastest in practice

Heap sort n † 2 n lg n 2 n lg n
n log n guarantee;

in place

Worst Case Average Case

Data Structure Search Insert Delete Search Insert Delete

Sequential

search
n n n n n n

Binary search log n n n log n n n

Binary search

tree
n n n log n log n sqrt(n)

Red-black BST log n log n log n log n log n log n

Hash table n n n 1 † 1 † 1 †

1 † - Uniform hashing assumption

S e t s

• Union of two sets

Syntax:

Method 1: mySet1.union(mySet2)

Method 2: mySet1 | mySet2

• Intersection of two sets

Syntax:

Method 1:

mySet1.intersect(mySet2)

Method 2: mySet1 & mySet2

• Difference of two sets

Syntax:

Method 1:

mySet1.difference(mySet2)

Method 2: mySet1 - mySet2

• Symmetric difference of two sets

Syntax:

Method 1:

mySet1.symmetric_difference(m

ySet2)

Method 2: mySet1 ^ mySet2

• To initialize an empty set:

Syntax: mySet = set()

• Initialize a non empty set

Syntax: mySet = set(element1,

element2...)

• To add element X to the set

Syntax: mySet.add("x")

• Remove element "x" from a set:

Syntax:

Method 1: mySet.remove("x") --

If "x" is not present, raises a

KeyErorr

Method 2: mySet.discard("x") --

Removes the element, if present

• Remove every element from the set

Syntax: mySet.clear()

• Check if "x" is in the set

Syntax: "x" in mySet

• Size of the sets:

Syntax: len(mySet)

It is an unordered collection with no duplicate elements. It supports mathematical operations like

union, intersection, difference and symmetric difference.

Data Structures

Primitive
Non -

Primitive

Integer Float String Boolean

Array List Tuple Set FileDictionary

Linear Non - Linear

Stacks Queues Graphs Trees

D i c t i o n a r i e s

It is an unordered set of key value pairs

• Initialize an empty Dict

Syntax: myDict = {}

• Add an element with key "k" to the Dict

Syntax: myDict["k"] = value

• Update the element with key "k"

Syntax: myDict["k"] = newValue

• Get element with key "k"

Syntax: myDict["k"] -- If the key is not

present, a KeyError is raised

• Check if the dictionary has key "k"

Syntax: "k" in myDict

• Get the list of keys

Syntax: myDict.keys()

• Get the size of the dictionary

Syntax: len(myDict)

• Delete element with key "k" from the dictionary

Syntax: del myDict["k"]

• Delete all the elements in the dictionary

Syntax: myDict.clear()

https://intellipaat.com/
https://intellipaat.com/python-for-data-science-training/

