
CheatSheet
Express

https://www.thecodehelp.in/

2 | P a g e

In this Cheatsheet, we will cover the basics of Express.js. We will
provide examples to help you understand how Express.js works
and how to use them in your own web development projects.
Whether you are a beginner or an experienced developer, this PDF
can serve as a useful reference guide.

 EXPRESS

Express.js is a popular open-source web application framework for
Node.js, a JavaScript runtime that allows developers to build
scalable, high-performance server-side applications. It provides a
wide range of features and utilities for web application
development, such as routing, middleware, and template
rendering.

With Express.js, developers can quickly create server-side

applications that handle HTTP requests, process data, and
respond with dynamic content or data from a database. It also
supports a wide range of middleware that can be used to add
functionality, such as authentication, compression, logging, and
more.

Express.js is designed to be flexible and easy to use, allowing

developers to customize and extend it to meet the specific needs
of their applications. Its modular structure and extensive
community support make it one of the most popular frameworks
for building web applications with Node.js.

Express is a minimal and flexible Node.js web application
framework that provides a robust set of features for web and
mobile applications.

3 | P a g e

INSTALLATION

HELLO WORLD SERVER

BASIC ROUTING:

npm install express

const express = require('express');
const app = express();
app.set('port', (process.env.PORT || config.port));

 app.get('/', (req, res) => res.send('Hello World!'));
app.listen(app.get('port'), () =>

console.log(`Server started on ${app.get('port')} port`))

 // GET
 app.get('/', function (req, res) {
 res.send('Hello World!')
 })

 // POST
 app.post('/', function (req, res) {
 res.send('POST request. body:', req.body)
 })

 // DELETE
 app.delete('/:id', function (req, res) {
 res.send('DELETE request for id:'. req.params.id)
 })

4 | P a g e

STATIC FILE SERVING:

LOGGING ALL ROUTES:

DEFINING ROUTES IN A DIFFERENT FILE:

File: /routes/users.js

app.use(express.static(__dirname + '/public'));

app._router.stack.forEach(function(r) {
 if (r.route && r.route.path) {
 console.log(r.route.path)
 }
});

// File Path: /routes/users.js

 var express = require('express');
 var router = express.Router();
 router.get('/', (req, res) => {
 const users = []; // get from db
 res.send(users);
 });
 router.get('/:id', (req, res) => {
 const user = {}; // get from db
 res.send(user);
 });
 router.post('/', (req, res) => {
 const user = req.body; // save user to db
 res.send({status: 'success'});
 });
 module.exports = router;

5 | P a g e

ADDING ROUTES FROM: /routes/users.js

REDIRECTS:

app.use('/user', require('./routes/user'));

router.get('/old-path', function(req, res) {
 res.redirect('/temp-new-path'); // sends a 302
});

router.get('/old-path', function(req, res) {
 res.redirect(301, '/permanent-new-path'); // sends a 301
});

